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ABSTRACT

This thesis examines the relationship between elliptic curves with complex
multiplication and Lambda structures. Our main result is to show that the
moduli stack of elliptic curves with complex multiplication, and the universal
elliptic curve with complex multiplication over it, both admit Lambda struc-
tures and that the structure morphism is a Lambda morphism. This implies
that elliptic curves with complex multiplication can be canonically lifted to
the Witt vectors of the base (these are big and global Witt vectors). We
also show that elliptic curves with complex multiplication of Shimura type are
precisely those admitting Lambda structures. Along the way, we present a
detailed study of families of elliptic curves with complex multiplication over
arbitrary bases, give new derivations of the local reciprocity map and the
global reciprocity map associated to an imaginary quadratic field, construct
a new flat, affine and pro-smooth rigidification of the moduli stack of elliptic
curves with complex multiplication and exhibit a relationship between perfect

Lambda schemes and periods, both p-adic and analytic.
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INTRODUCTION

This thesis began as an attempt to answer the question:

Q: What do elliptic curves with complex multiplication and

A-structures have to do with one another?

The reader is probably somewhat familiar with first term, less likely so with
the second. Even if he or she is familiar with both, why such a question might
have an answer worth finding is probably not clear at all. So we will begin by
explaining how both of these terms are related to a third: class field theory.

Let us remind the reader of the relationship between elliptic curves with
complex multiplication and class field theory. For all that follows we fix an
imaginary quadratic field K, with ring of integers Ox. If L/K is a finite
extension, an elliptic curve with complex multiplication by Oxk over L, here on
called a CM elliptic curve over L, is an elliptic curve E/L with the property
that its ring of endomorphisms Endy,(E) is isomorphic to Ok. For a general
elliptic curve E/L, the Tate module T(E) = lim,, E[n](L5°P) is a rank two Z-
module equipped with an action of G(L*?/L). However, when E/L is a CM
elliptic curve, this rank two Z-module becomes a rank one Z ®z Og-module
and so the action of G(L*P/L) is defined by a character

pp/L - GLP/L) = G(L*P/L)™ — (Z @7 Ok)*.

In particular, it follows that extensions of L generated by torsion points of E
are abelian over L. It is then known that if one can find a CM elliptic curve
E/K defined over K itself, the resulting character

pejx : G(K™®/K) = (Z ®7 Ok)*
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is injective from which it follows that every abelian extension of K is realised
as a sub-extension of one generated by the torsion points of E — thus realising
the class field theory of K.

In general there do not exist CM elliptic curves defined over K. The smallest
field of definition of a CM elliptic curve is the Hilbert class field H/K (the
maximal abelian, everywhere unramified extension of K). If E/H is such a
curve then the extensions of H generated by its torsion points are abelian over
H, but they are not necessarily abelian over K. If one is still interested in the
class field theory of K, this problem can be overcome by considering certain

x = Autg(E) invariant maps
w:E — Pl

called Weber functions. The extensions of K generated by the co-ordinates of
the images of torsion points of E under a fixed Weber function are abelian,
and every abelian extension of K is a sub-extension of one of these — again
realising the class field theory of K. Therefore, if one is interested in the class
field theory of K one need go no further than CM elliptic curves.

Now let us explain the relationship between A-structures and class field
theory. First, a A-structure on a flat Spec(Ok)-scheme X (we will say more
about the non-flat case later) is nothing more than a commuting family endo-

morphisms

P X =X
indexed by the non-zero ideals a of Ok such that for any two ideals a,b we
have 1% o ¢ = 4% and with the property that for each prime ideal p, the
restriction of 1 to the fibre X := X Xgpec(0x) Spec(Ok/p) is the Np-power
Frobenius endomorphism

2 X, — X,

We call the endomorphisms ¢ (for all a) a commuting family of Frobenius lifts.
The resulting notion of a A-morphism of A-schemes f : X — Y being one that
commutes with the Frobenius lifts. The Ok-scheme Spec(Ok) has a unique A-
structure with Frobenius lifts all equal to the identity and if L /K is an abelian
extension with ring of integers Op, then (ignoring the ramified primes) the
finite locally free Ok-scheme Spec(Op,) admits a unique A-structure as well.
More generally, if S is any finite locally free Spec(Ok )-scheme equipped with a
A-structure then the extension of K generated by the co-ordinates of S (in any

affine embedding) is an abelian extension of K. The link between A-structures
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and class field theory appears. These observations also have the following
implication. If X a A-scheme over Spec(Ok) and Ox : Spec(Ok) — X a A-
morphism then (under certain hypotheses) for each ideal a the scheme X[a] :=
™ (0x) C X is a finite locally free A-scheme over Spec(Ox). Therefore, the
extension of K generated by the coordinates of X[a] will be abelian.

With this in hand, let us return to CM elliptic curves. It now turns out that
if E/K is a CM elliptic curve, writing & — Spec(Ok) for the Néron model of
E/K, the flat Og-scheme & admits a unique A-structure (ignoring the primes
of bad reduction for E/K) and the morphism

Og : Spec(Ok) — &

is a A-morphism. Moreover, for each integer n > 0, viewing (n) C Ok as an
ideal, we have that ¢¥/(*(0s) = &[n] is the n-torsion of & which is now a finite
locally free A-scheme. It is now also natural to ask whether in general there
exist CM elliptic curves E/H defined over the Hilbert class field whose Néron
models admit A-structures and this turns out to be a subtle question.

At this point, we should note that everything we have said so far is the work
of others. Indeed, the theory of complex multiplication and its relationship
with class field theory is classical and has a very long history and to give a list
of names would be very difficult. The theory of A-schemes and A-structures
is due to Borger ([4], [5]), and the relationship between A-structures and
class field theory is due to Borger-de Smit ([7], [8]) and indeed it was my
advisor James Borger who originally posed the question at the beginning of
this introduction and the more specific one asking for the existence of CM
elliptic curves E/H over the Hilbert class field with A-structures. This second

question we can now answer:

0.0.1 Theorem. — (i) There always exists a CM elliptic curve E/H over
the Hilbert class field whose Néron model admits a A-structure.
(ii) The Néron model of a CM elliptic curve E/H admits a A-structure if and

only if the extension of K generated by its torsion is abelian over K.

CM elliptic curves (over arbitrary abelian extensions of K) with the property
that the extensions generated by their torsion is abelian over K were introduced
originally by Shimura and are now called CM elliptic curves of Shimura type.
Indeed, it is using results of Shimura that, after proving (ii) we are able to
prove (i). It worth pointing out that CM elliptic curves of Shimura type have

been studied by several authors, with particular reference to their L-functions
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and the Birch-Swinnerton-Dyer Conjecture. Indeed, the papers of Coates-
Wiles [13] and Rubin [30] concern curves of this type.

Let us now also answer the question posed in the first paragraph:

Q: What do elliptic curves with complex multiplication and
A-structures have to do with one another?
A: Everything!

The central theorem we aim to prove is the following and explains our

answer to the question above.

0.0.2 Theorem. — Let #cy denote the moduli stack of CM elliptic curves
and let & — Mcov denote the universal CM elliptic curve. Then both &
and Mom admit canonical A-structures and the morphism & — Mom 1S a

A-morphism.

The reader will probably have noticed that we have not even defined what it
means for a general (non-flat) scheme, let alone a stack, to have a A-structure
and in fact we do not propose to define A-structures on stacks in this thesis (not
because it isn’t possible to do so, only because doing so would lead us into the
nightmarish realm of 2-monads on 2-categories). In any case, the definition
of A-structure we have given for a flat Ok-scheme admits an obvious naive
generalisation — that of a commuting family of Frobenius lifts — though it is
not the correct one. Before we explain the correct definition, and the actual
meaning of (0.0.2), let us describe the naive A-structure on .#Zcy.

If S is an Ogk-scheme then .Zc\(S) is the category of CM elliptic curves
E over S. In particular, the objects E/S € #cm(S) are Og-modules and for
each non-zero ideal a C Og it is possible to make sense of the Og-module
E ®0, a~! which is again a CM elliptic curve over S. This defines for each

ideal a an endofunctor
— ®0k al: M — Mov : E— E®OK a_l,

and for different ideals a these endo-functors all ‘commute’ in the obvious
sense. More important is the following fact: if p C Ok is prime and S is
an Ok-scheme of characteristic p, i.e. the morphism S — Spec(Ok) factors
through Spec(Ox/p), then for all CM elliptic curves E/S there is a canonical

isomorphism

E®oy p ' — FiVP*(E)
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between E ®0, p~! and the pull-back of E along the Np-power Frobenius
Fr¥ : S — S (this construction in its simplest form is due to Serre). In other
words, the functor — ®o, p~! is a lift of the Np-power Frobenius and we have
defined a naive A-structure on .Zc.

However, as we have already noted, the naive notion of a A-structure as a
commuting family of Frobenius lifts is not the correct one. Let us now at least
say enough about the non-naive notion of A-structure so that we may explain
to the reader some of the actual meaning of (0.0.2).

There is a functor
W* . SchoK — SchoK : X — W* (X)

sending an Ok-scheme X to its scheme W*(X) of (big Ok-typical) Witt vectors
(technically speaking W*(X) is actually an ind-scheme, but for the purposes
of this introduction we will ignore this fact). We will not say much here about
the geometry of the Witt vectors W*(X) themselves, other than to remark
that they have many miraculous properties, chief among which is that if X is
an Og-scheme of characteristic p for some prime of Ok, then (very roughly
speaking) the Witt vectors W*(X) of X have characteristic 0. The properties of
the Witt vectors W*(X) which are of interest to us presently are the following:

(i) W*(X) possesses a family of commuting Frobenius lifts
P WH(X) - WH(X)

indexed by the ideals a of Ok (i.e. a naive A-structure),

(ii) there is a morphism g(;) : X — W*(X), and

(iii) for all flat A-schemes S (the definition of which we have given) and all
morphisms X — S there is a unique morphism W*(X) — S compatible
with the Frobenius lifts on W*(X) and S such that the following diagram

commutes

(0.0.2.1)

X ——S.

If we now let S be an arbitrary Ok-scheme, the diagram (0.0.2.1) can be
taken as the definition of a A-structure on S: a A-structure on an Og-scheme
S is, for each morphism X — S, a canonical lifting W*(X) — S of that mor-
phism making the diagram (0.0.2.1) commute (together with certain iterated

compatibilities which we will not give here). It is not unreasonable to make



x INTRODUCTION

the comparison between the construction of Serre-Tate of the canonical lift to
the (p-typical) Witt vectors of ordinary elliptic curve over a finite field.

We can now give the reader a better sense of the meaning of (0.0.2). If
S is an Og-scheme and E/S is a CM elliptic curve, i.e. if one is given a
morphism S B M, then there is a functorially defined CM elliptic curve
We(E) over the (big Ox-typical) Witt vectors W*(S) of S, i.e. there is
a morphism W*(S) Wa—MgE)

gz‘l)(WEM (E)) = E. This to say we have a ‘commutative’ diagram:

AMcv, together with a canonical isomorphism

and this is what we mean when we say that .#Zcy admits a A-structure. It
follows that CM elliptic curves can be lifted canonically to the Witt vectors
of the base. We would like to point out that the base S here is arbitrary.

We shall not anything more about (0.0.2) here, nor the A-structure on &.
However, what (0.0.2) does do is equip & — #cy with an incredible amount of
very rich structure — structure which is of interest in and of itself in the world
of A-geometry, but which can also be exploited to prove new results in both
the theory of CM elliptic curves and the arithmetic of imaginary quadratic

fields. The following result is an example of this phenomenon:

0.0.3 Theorem. — Let K(f) be the ray class field of conductor § and let
E/K(f) be a CM elliptic curve of Shimura type. If the f-torsion E[f] is con-
stant then E/K(f) admits a global minimal model away from §. In particular,
if f = Ok so that K(f) = H then every CM elliptic curve E/H of Shimura

admits a global minimal model.

In the special case when disc(K/Q) is prime and f = Ok this result was
proven by Gross (Corollary 4.4 [22]),

We now give an overview of the chapters:

Chapter 1: We recall the local and global reciprocity maps, define Lubin—
Tate modules and study their moduli stack .#1 . We show that .#1 admits
a certain torsor structure and using this explain how to derive the local reci-

procity map directly from .#1 using only its formal properties. We then give
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an overview of a certain special case of global reciprocity, and present some
basic constructions regarding local systems of rank one.

Chapter 2: We undertake a quite detailed study of CM elliptic curves over
arbitrary bases and their moduli stack .#Zcn. We show that .#Zcy admits a
certain torsor structure analogous to that of .Z1r. We also give CM analogues
of some classical theorems for general elliptic curves and, in a similar vein to
Lubin-Tate modules, we explain how to derive a certain global reciprocity map
directly from .#Zcn using only its formal properties. Using this we classify all
CM elliptic curves over fields (of arbitrary characteristic) in terms of their
associated Galois representations. Finally, we consider the moduli stacks with
level structure and consider their representability in the fine and coarse setting.

Chapter 3: We give a short overview of the general theory of A-schemes,
Witt vectors and arithmetic jets. We then prove a handful of (slightly techni-
cal) new results for later use.

Chapter 4: Here we prove the main theorem regarding lifting CM elliptic
curves over arbitrary bases to their big Og-typical Witt vectors. We then
prove that a CM elliptic curve is of Shimura type if and only if its Néron
model admits a A-structure. We then consider the minimal models of CM
elliptic curves of Shimura type and prove their global existence under certain
hypotheses. Next we consider quotients of CM elliptic curves by their groups
of automorphisms and prove that (suitable reinterpreted) they always exist
and we show that the quotient of the universal CM elliptic curve descends to
the coarse space of the moduli stack of CM elliptic curves. We show how this
descended curve admits a canonical A-structure and allows one to construct
the ray class fields of K in a choice free, integral and coherent manner and we
also show show that this descended curve is nothing but a (global) projective
line. We then construct a flat, affine and pro-smooth cover of the moduli stack
of CM elliptic curves, which comes equipped with a A-structure compatible
with that on .Zcy. Finally, we exhibit an interesting relationship between
certain deformations of CM elliptic curves with A-structures and their Tate
modules.

Appendix: We give an abstract and formal definition of smooth formal
groups, we consider the general properties of ‘Serre’s tensor product’ and we
give a short overview of Faltings’ generalised Cartier duality, needed to prove
certain results in Chapter 1. Finally, we prove a strengthening of an old

principal ideal theorem for arbitrary number fields.






FOUNDATIONS, CONVENTIONS AND
TERMINOLOGY

0.1. Sheaves

0.1.1. In order to have a nice common ground for all the objects we would
like to work with, we shall here define the basic categories of (pre)sheaves
in which all objects we consider will live. We have decided to not to bother
ourselves with set theoretic issues of ‘size’ (which really only come up when
one tries to sheafify wild presheaves for large topologies [37] — something we
will have no need to do), however the concerned reader may add the word
‘universe’ whenever he or she sees fit.

Let Aff denote the category of affine schemes and PSh the category of
presheaves of sets on Aff, i.e. the category of functors

X : Aff® — Set.

We write Sch for the category of schemes and as usual we embed Aff and Sch
in PSh by sending a scheme to the functor it represents.

We shall be working with sheaves for the fpqc and étale topologies on Aff
which we now recall. The covers of an affine scheme S for the fpqc (resp.
étale) topology are given by flat (resp. étale) families (S; — S);e1 indexed by
a finite set I which are covers in the usual sense. A sheaf for the fpqc topology
will just be called a sheaf and the category of such sheaves will be denoted
Sh C PSh. A sheaf for the étale topology will be called an ét-sheaf and we
write Sh® c PSh for the corresponding category. We have the inclusions

Aff C Sch C Sh c Sh¢*  PSh.

0.1.2. If f: S — S is a morphism of presheaves and X — S is an S-presheaf
then we denote the fibre product by X xgS’, f*(X), or when f is clear by Xg.
Viewed as a functor f* : PShg — PShg/, the right adjoint to f* is denoted
by f. and the left adjoint by fi. Recall that if X’ — S is an S’-presheaf then

fi(X’) is the S-presheaf X" — &' 1,8 and f« is the S-presheaf defined by

Spec(A) — Homg (Spec(A), f«(X")) = Homg (f*(Spec(A)), X").
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The functor f; will be used rarely, and only in the case when f is an isomor-
phism, in which case it is isomorphic to ¢* where g = f~1.

0.1.3 FExample. — An important family of sheaves for the fpqc topology are
the ind-affine schemes, the category of which we denote by IndAff. Recall an
ind-affine scheme X is a pre-sheaf X which can be written as filtered a col-
imit X = colim; Spec(A;) of affine schemes (it follows automatically from this
that it is a sheaf). One of the main examples we work with is the follow-
ing: if S = Spec(A) is an affine scheme and I is an ideal we write Spf;(A)
(or just Spf(A) when I is clear from the context) for the ind-affine scheme
colim,, Spec(A /I"*1). If X — Spec(A) is a presheaf over Spec(A) we say that
X is I-adic or that I is locally nilpotent on X if the morphism X — Spec(A)
factors through Spf(A) C Spec(A). If Spec(B) — Spec(A) is an affine Spec(A)-
scheme then Spec(B) is I-adic if and only if the ideal IB C B is nilpotent.

0.1.4. If A is a set and S is an ét-sheaf then we write

As=11s

a€A

for the constant ét-sheaf over S associated to A. If S is actually a sheaf, so is
Ag. When S is a fixed base (usually the spectrum of some Dedekind domain)
we will drop the sub-script and just write A.

0.1.5. By a cover of a sheaf S (resp. ét-sheaf) we just mean a family (S; —
S)ict of morphisms of sheaves (resp. ét-sheaves) such that [[,.;S; — S is
an epimorphism. When referring to properties or making claims which are
compatible with base change we will use the word local to mean after base
change along a cover.

0.1.6. We say that a morphism of pre-sheaves f : X — S is representable, or
that X is representable over S, if for each affine scheme S’ — S the pre-sheaf
X xg S’ is (representable by) a scheme. In general, for a morphism of sheaves
(or ét-sheaves) to be representable is not local. However, it is the case for
f which are representable by open immersions, or when f is representable
by affine morphisms. In both of these cases we will just say that f is open
immersion, or that f is affine. Similarly for any other condition of f that
includes affine in its definition: finite, finite locally free, a closed immersion
and so on.

0.1.7 Proposition. — If f : X — Y is a finite locally free étale morphism of
ét-sheaves then the inclusion of the image f(X) = Y in Sh® is an open and
closed immersion, the inclusion of the complement Y — f(X) — Y is also an
open and closed immersion and Y 11 (Y — f(X)) =Y. Moreover, if X and Y
are sheaves, so are the ét-sheaves f(X) and Y — f(X).
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The following result will be used often (it follows from Théoréme 2.1 of
Exposé VIII in [3]) cited as ‘by descent’:

0.1.8 Proposition. — Let X — S be a morphism of (ét-)sheaves and let
S" — S be an epimorphism of (ét-)sheaves. Then X — S is affine if and only
if X xgS" — S is affine.

0.1.9. We now say a little about what we mean by a quasi-coherent Og-
module on a sheaf S. We have the relatively representable sheaf of rings

Os = Aé = SpeC(Z[T]) X Spec(Z) S (0191)

and the abelian category of Og-modules Mod(&s). For any map of sheaves
f:S =S, as Og xg S = Oy, we obtain the functor

f* : Mod(ﬁs) — MOd(ﬁS/) M — M Xs S = %S’-

Note that this functor is exact for any map f.

The category of quasi-coherent sheaves QCoh(fs) C Mod(0s) is the full
sub-category of Os-modules .# such that there exists a cover (S; — S);er and
for each i € I an exact sequence

ﬁév[ — ﬁg — Ms; — 0

where M; and N; are sets. When S is a scheme this category coincides with
the usual category of quasi-coherent sheaves over S and the functor f* defined
above has its usual meaning. However, the inclusion QCoh(&s) C Mod(0s)
is not exact (to be precise it does not preserve kernels). This explains why
f* : Mod(0s) — Mod(0g) is exact for any f while the same is not true for
QCoh(0s) — QCoh(0s).

We shall be almost exclusively concerned with locally free finite rank Os-
modules — or what is the same vector bundles — the equivalence between
which is a tautology with our definition g := Aé.

0.2. Group actions

0.2.1. Let A — B be a homomorphism of rings and let G be some group
of A-automorphisms of B. The example to have in mind here is a Galois
extension of fields K — L and G = G(L/K).

Given o € G, in order to avoid the cumbersome notation Spec(o) : Spec(B) —
Spec(B), we will just write o : Spec(B) — Spec(B). However, associating an
affine scheme to a ring is contravariant, so that this notation becomes confus-
ing when considering compositions o o 7 of elements in G. In order to avoid
problems here, we make the convention that the product of two elements of
0,7 € G, will be denoted by o7 so that o7 € G is the automorphism

BL-B3B.
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We will only use the composition symbol o when viewing ¢ and 7 as auto-
morphisms of Spec(B) so that o o7 will denote the Spec(A)-automorphism of
Spec(B)

Spec(B) — Spec(B) %+ Spec(B).
With this convention the following three symbols denote the same Spec(A)-
automorphism of Spec(B)

o o1 = Spec(to) = 7o : Spec(B) — Spec(B).

0.3. Stacks

0.3.1. Let C be a site (the examples we have in mind are C = Aff, IndAff,
Sh). A fibred category over C is a category 2~ equipped with a functor

p: 2 —C

together with, for each morphism f : S’ — S of C, a pull-back functor
¥ Z(S) —» Z(8) where 2 (S) denotes the fibre of p over S (objects of
Z mapping to S and morphisms those mapping to ids) together with various
natural transformations between their compositions satisfying certain identi-
ties. There is also the notion of a morphism of fibred categories f : 27/ — 2
being a functor (strictly) compatible with the functors from 2 and 2 to C
together with certain compatibility relations between the pull-back functors
of 27 and 2 . Finally, a stack over C is a fibred category whose objects and
morphisms satisfy descent with respect to the topology on C.

To keep things (relatively) concrete we shall say the following for C = Aff
with the fpqc topology — it will also apply when working with other sites C.

The main point we want to make is that when defining stacks 2~ — Aff we
shall often skip the details and define only the fibres 27 (S) for S € Aff and the
pull-back functors f* : 2°(S) — 2 (S') for f: S’ — S in Aff (and sometimes
not even these when they are clear). Similarly a morphism of stacks will be
defined only on the fibres, the various compatibilities which must be satisfied
will be obvious from the context.

0.3.2. To each sheaf X there is an associated stack Aff x — Aff and for each
morphism f: X — Y a morphism

Aff x = Affjy : (S=X) = (S= X DY),
Moreover, every morphism of stacks

is uniquely isomorphic to one of this form. In other words, when considering
sheaves as the more general objects stacks, via X — Aff 5, we do not lose or
gain anything especially important and so when considering a sheaf as a stack
we shall continue to denote it by X.
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0.3.3. Finally, if 2~ — Aff is a stack and S € Aff we write 2°(S)/ ~ for
the set of isomorphism classes of objects of Z(S). The pull-back maps f* :
Z(S) —» Z () for f: S — S define maps 2°(S)/ ~— Z(S')/ ~ and this
defines a (separated) pre-sheaf

AfF® > Set : S v 2(S)/ ~

whose sheafification C(2") = X (which will be denoted by the print form of
the cursive letter denoting the stack) is called the coarse sheaf associated to
Z . There is an induced morphism cgy : Z — X and for each sheaf Y and
each morphism f: 2" — Y there is a unique morphism f’: X — Y such that

flrocy =T

0.4. Dedekind domains

Here we fix some general notation for Dedekind domains and various related
objects.

0.4.1. Let O be a Dedekind domain with field of fractions K and finite residue
fields. An integral ideal of O is any non-zero ideal and a prime ideal will mean
a non-trivial prime ideal. We write Idp (resp. Pring) for the monoid of
integral (resp. and principal) ideals of O and Idk (resp. Pringk) for the group
of fractional (resp. principal) ideals of O. If a,b € Idp we write (a,b) =a+b
so that a and b are relatively prime if and only if (a,b) = O. We write CLo
for the class group of O, i.e. the group of isomorphism classes of rank one
projective O-modules.

Let f be an integral ideal. We write Idg) C Ido (resp. Idg) C Idk) for the
sub-monoid (resp. sub-group generated) by the prime ideals prime to f. If
a € K* then we say a = 1 mod f to mean that the ideal (a — 1) can be written
as fab~! where a,b C O are ideals (if a = 1 we allow a = (0)) with b # (0)
and (b,f) = O. If f|g is another ideal then we write Pringgzno 45 to denote the
group of principal fractional ideals a = (a) prime to g with a = 1 mod f.

We write Nf for the cardinality of O/f and if f = p is prime we write
F, = O/p. If A is an Fp-algebra then we write Fr'¥% : A — A for the Np-power
Frobenius endomorphism.

We write O for the kernel of the homomorphism O* — (O/f)* and we
say that f separates units if this homomorphism is injective (this is not often
the case, but will be used constantly in the text).

We write O[f!] for the sub-O-algebra of K generated by the elements of
f= ¢ K. If X — Spec(O) is any Spec(O)-sheaf then we write X[f~!] =
X Xgpec(0) Spec(O[f1]). We say that § is invertible on X if X[f~!] = X. If
p is a prime ideal we say that X has characteristic p if the structure map
X — Spec(O) factors through Spec(F,) — Spec(O).
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If p is a prime we write
Spf,(0) = col>i(r)n Spec(O/p™ 1) € Spec(0).
nz
We say that X is p-adic, or that p is nilpotent on S, if the structure morphism

X — Spec(0) factors through Spf,(O) C Spec(O). For an affine Spec(O)-
scheme Spec(A) to be p-adic is equivalent to the ideal pA being nilpotent.



CHAPTER 1

LOCAL AND GLOBAL RECIPROCITY

In §81.1 and 1.3 of this chapter we recall the local and global reciprocity
maps of class field theory. In §1.2 we define Lubin—Tate O-modules (in fami-
lies) for a non-archimedian local field K with ring of integers O and show that
the moduli stack .#1 of Lubin—Tate O-modules is a torsor under the stack
€L o of rank one O-local systems (1.2.13). We show how using this structure
one can derive the local reciprocity map directly from the stack .#1 1 using
only the formal properties of Lubin-Tate O-modules (1.2.20). The construc-
tion we give is an analogue, for non-archimedian local fields, of the derivation
of the global reciprocity map for imaginary quadratic fields using CM elliptic
curves (which we address in Chapter 2). In §1.4 we recall how, for global fields
K equipped with a certain special place co and associated ring of integers Ok,
the reciprocity map associated to the maximal abelian extension of K which is
totally split at co can be reinterpreted in terms of certain class groups associ-
ated to Ok (such pairs (K, co) were first considered by Drinfel’d [18]). Finally,
in §1.5 we define and give the basic properties of rank one Oxk-local systems,
their level-f structures and moduli for use in the later chapters.

The only new results (or perhaps observations) in this chapter are the €% o-
torsor structure on .1 (which in any case we prove using results of Faltings)
and the derivation of the local reciprocity map directly from .1 .

1.1. The local reciprocity map

The purpose of this section is to recall the basic properties of local fields
and the local reciprocity map. Everything here is contained in Chapters I and
VI of [1]).

1.1.1. Let K be a local field. There are two cases and for each we fix the
following notation:
(i) K is archimedian and is isomorphic to R or C. We write | — |k for the
usual absolute value if K —+ R and the square of the usual absolute
value if K — C.
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(ii) K is non-archimedian and is the field of fractions of a discrete valuation
ring O C K with maximal ideal p and finite residue field Fy,. We equip
it with the absolute value |a|g = Np~*(® where a - O = p*»(®) ¢ K).

We also fix maximal abelian and separable extensions K ¢ K#P ¢ K5P. If K
is non-archimedian these extensions are not complete but from the point of
view of Galois theory nothing is lost.

1.1.2. Let K be a non-archimedian local field and let K C L. € K*P be a (not
necessarily finite) Galois extension of K. Write Oy, C L for the ring of integers
of L, pr, C K for its unique maximal ideal and F,, = Or,/py, for its residue
field. The reduction homomorphism G(L/K) — G(Fy, /F}) is surjective and
is bijective whenever L/K is unramified. In this case we write o, /x € G(L/K)
for the unique element lifting the Np-power Frobenius automorphism of Fy, .
We denote by K € K" C K*P the maximal unramified extension of K. The
map

Z — GK™/K) : n— oftu g

is a continuous isomorphism whose inverse is denoted by vk : G(K™/K) — Z.
If L/K" is any extension we also write vk : G(L/K) — Z for the map o —
vk (oK) and define W(L/K) := v ' (Z) € G(L/K) (this is the ‘Weil group’).

1.1.3 Theorem. — There is a unique isomorphism
KX = W(K™/K) : a = (a, K*®/K) (1.1.3.1)

such that

(i) for all finite extensions K C L C K2 | the kernel of the composition
a > (a,K*/K)|, is Np, k(LX) and the induced map

K*/Np (L) = G(L/K)

s an isomorphism, and
(ii) the diagram

(_7Kab/K)
K* — " W(K®/K)

’Up J J
n»—)a{éur/K

Z—— s W(KY/K)

commutes.

Proof. — Uniqueness and existence are Proposition 6, §2.8 of Chapter VI and
Theorem 2, §2.2 Chapter VI of [1] respectively. O
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1.1.4. We list the following further property of the reciprocity homomor-
phism (see §2 Chapter VI of [1]): If K'/K is any finite separable extension and
K’?P /K’ a maximal abelian extension of K’, then the diagram

(—,K/ab/K')
K’* W(K/ab/K/)

NK’/KJ J
(= K*P/K)

KX —————— W(K®/K)
commutes.

1.1.5. We also recall the reciprocity map (—, K" /K) associated to an archi-
median local field K. It is the unique continuous homomorphism

(-, K*/K) : K* = G(K*®/K)

sending —1 to the unique generator of G(K2"/K) which is either trivial (if
K = C) or cyclic of order two (if K — R.).

1.2. The local reciprocity map and Lubin—Tate O-modules

We now define rank one O-local systems over p-adic sheaves and their moduli
stack €2 . We then define and study families of Lubin—Tate O-modules over
p-adic sheaves and show that .%o acts on the moduli stack .#11 of Lubin—
Tate O-modules, making it a torsor under 2o (see (1.2.13) and (1.2.15)).
Finally, we explain in (1.2.19) how this action, combined with the basic prop-
erties of Lubin—Tate O-modules, allows one to construct the reciprocity map
of (1.1.3).

1.2.1. We shall be working with the category of p-adic sheaves, i.e. sheaves
S — Spf(O) = colim,, Spec(O/p"*1). If S — Spf(O) is a p-adic sheaf then we
write S, = S Xgpr(0) Spec(O/p™ ) so that S = colimy>o Sy,. Unless otherwise
stated S denotes a p-adic sheaf.

1.2.2. For each p-adic sheaf S we write 63 for the pro-constant sheaf of rings

Og := lim O/p"+1s.

If L is any finitely generated O-module then we write fg for the pro-constant
sheaf of Og-modules
Lg := lim L/p" L.
poatnd i

If F and G are two Gs-modules over S we write F®o G for the Gs—module F(X)@S

G and Hom{ (F, G) for the sheaf of Ogs-homomorphisms F — G. Moreover, if
G = Lg for some finite rank projective O-module L we shall just write F ®¢ L
for F ®6$ Ls.
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1.2.3. A rank one O-local system over a p-adic sheaf S is a sheaf £ of 65—
modules with the property that there exists a cover (S; — S);er and rank
one projective O-modules (L;);e1 such that & xgS; — Esl We denote by
¢ £ o the moduli stack of rank one O-local systems over Shgpy. We list the
following (usual) constructions and properties of O-local systems:

(i) The tensor product .Z ®o £’ of two rank one O-local systems £ and

&' (in the category of CA)S—modules) is again a rank one O-local system.

(ii) The sheaf of Og-homomorphisms Hom§ (.Z,.2") is again a rank one O-
local system and defining .#" := Hom{ (.Z, Og) we have Hom{(%,.2") —
L' @0 LY.

(iii) The sheaf of automorphisms Aut$ (.Z) of a rank one Og-local system .&
is isomorphic to O := lim, (O/p”“)xs.

(iv) The sheaf of Og-isomorphisms Isomg (&, &") is pro-finite and étale over
S and is an GSX—torsor over S. We denote by py /g € HY(S, GSX) the class

of the torsor Isomg(.Z, Og) so that the map
L pys € HY(S,0%)

defines a bijection between isomorphism classes of rank one O-local sys-
tems over S and H'(S, 0J).

1.2.4. Let 63 — Og be the unique homomorphism whose pull-back to S,, =
S Xgp(0) Spec(O/p" 1) is

GSn — O/pn+1s — ﬁsn

where the second map is induced by the structure map S,, — Spec(O/p"*+1).

A strict formal O-module over S is a formal group F over S equipped with
the structure of a Gg—module which is strict with respect to the homomorphism
Os — O (cf. (A.2.4)). Recall that this means that the two actions of Og on the
OUs-module Liep /S coming from the action of 63 on F and the homomorphism
65 — Us, coincide.

If . is a rank one O-local system over S then .Z (as an Gs—module) satisfies
condition (P) of (A.2.1) as locally it is isomorphic to Os. So we may apply
(A.2.5) to see that if F is a strict formal O-module over S and .Z is a rank one
O-local system over S then F ®¢ .Z is again a strict formal O-module over S
(of the same dimension as F).

Finally, we define the p”-torsion of a strict formal O-module F over S to be
the kernel of the homomorphism

induced by the inclusion O — p~".

1.2.5 Proposition. — Let F be a strict formal O-module of dimension one
over S. Then
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(i) locally on S there exists an isomorphism p : F — Ké with the property
that for all ¢ € pnp—1 C O we have po [(lr = ( - p,
(ii) colim, F[p"] =F, and

(iii) ker(Frp? g ) € Fo[p"].

Proof. — The claims are local on S so that we assume that S = Spec(A),
p"A = (0) for some r > 1 as S is p-adic, and by (A.1.7) we may also assume
that F = AL.

(i) This is Lemma 4.1.2 of [26].

Before we show (ii) and (iii) let us fix some notation and make some reduc-
tions. If a € O let us write [a](T) € A[[T]] for the power series defining the
multiplication by a map

a:F:A%%F:Aé.

We also choose a generator (m) = p so that ker(n™) = F[p"] for all n > 0.
Considering the coefficients of the series

[7|(T) = &1 T + T2 + - - € A[[T]],

the strictness of the action of Og shows that ¢; = 7 and by (i) we may assume
that [¢](T) = (T for ¢ € punxp—1 C O*. The relation

¢lr)(T) = [CI([7)(T)) = [=([C](T)) = [x](CT)

for all ¢ € punp—1 then shows that co = --- = cnp—1 = 0. Thus we may assume
that
[7](T) = 7T mod TNP.

We note that as p"A = (0) we have
[7"](T) = 0 mod TN?.

(ii) It is enough to show that for all A-algebras B and b € F(Spec(B)) =
Ké(Spec(B)) = nil(B) there is an n such that [7#"](b) = 0. However, as
[7"](T) = 0 mod TN’ we see that [7"™](b) = 0 whenever b™~P = 0 which
shows the claim.

(iii) We may assume that S = S xgp¢(0) Spec(O/p) = Sp so that pA = 0.
Then

[7](T) = expTNP mod TNPH

and hence
Np™—1

[7")(T) = ey TNF" mod TN,
Thus if Spec(B) is an affine p-adic Spec(A)-scheme and if b € nil(B) satisfies
Frgpn(b) = bN*" = 0 we have
[7](b) = 0 mod B™P" =0

and therefore ker(Frah,

F/S) C F[p"] for all n > 1. O
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1.2.6. A Lubin-Tate O-module over S is a strict formal O-module F over
S of dimension one (cf. (A.1.8)) with the property that the homomorphism
ip: F = F®o p~! is finite locally free of degree Np (in particular it is affine and
faithfully flat). A morphism of Lubin—Tate O-modules is just a homomorphism
of the underlying (A)s—modules. We denote by .1 the moduli stack of Lubin—
Tate O-modules over Shgp(0)-

1.2.7 Proposition. — If F/S is a Lubin—Tate O-module and £ /S is an O-
local system then F @0 £ /S is a Lubin—Tate O-module.

Proof. — We have that F ®o .Z is a strict O-module of dimension one by
(A.2.5). The homomorphism

ip:F®o$—>(F®o$)®Opil

is finite locally free of degree Np as this can be checked locally, e.g. when
% 5 Og, and in this case it is obvious. O

1.2.8 Corollary. — For each pair £, of rank one O-local systems over
S and each pair ¥, ¥’ of Lubin-Tate O-modules over S the natural map

Hom{ (F, F') @0 HomS¥ (.Z,.2") — Hom (F ®o, .Z, F' ®0y £')
s an isomorphism.
Proof. — This follows from (A.2.3). O

1.2.9 Lemma. — Let S be a sheaf of characteristic p, n > 0 and F be a
Lubin—Tate O-module over S. Then F[p"] = ker(FrF/S)

Proof. — We may work locally on S and so assume that S = Spec(A) and
that F = Al. By (iii) of (1.2.5) we have ker(FrF/S) Flp"]. AsF = Al it
follows that ker(FrF /S) is finite locally free of rank Np” over S. As F[p"] is

also finite locally free of rank Np™ the closed immersion ker(Frg}J;) C Flp"]

must be an isomorphism. O
1.2.10 Corollary. — For each n > 0 there is a unique isomorphism of func-
tors

Ut — @0 p " e ()

on My Xspr(0) Spec(Fy) such that for all Lubin—Tate O-modules F over char-
acteristic p-sheaves S the diagram

Np
/ xri/s

F@op " — s B (R

commutes.
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Proof. — For any Lubin-Tate O-module F'/S the two homomorphisms i,» and
Frg’;s are epimorphisms with the same kernel (1.2.9) and the claim follows. [

1.2.11 Remark. — Theresult (1.2.10) can be read as saying that the moduli
stack .#1r admits an endomorphism — ®o p~! : A1 — A1 which (upto
canonical isomorphism) lifts the Np-power Frobenius endomorphism. This
kind of structure is very closely related to the notions of A-structures, Witt
vectors and arithmetic jets (due to Borger and Buium) which we define and
study in Chapter 3. It is essentially the topic of Chapter 4 to study and exploit
this relationship in the context of CM elliptic curves (for which we prove an
analogue of (1.2.10) in Chapter 2, see (2.2.13)).

1.2.12 Proposition. — (i) IfF is a Lubin-Tate O-module over S the nat-
ural homomorphism

Os — End§ (F)

s an tsomorphism.
(ii) If F,F’ are a pair of Lubin—Tate O-modules over S then Homg(F,F’) 18
an O-local system over S and the evaluation homomorphism

F ®0 Hom§ (F,F') — F’

s an tsomorphism.

Proof. — The proof of these statements is an application of Faltings’ gener-
alised Cartier duality [20]. It would take us too far afield to give the proof
here and so we defer it to the appendix (see (i) and (ii) of (A.3.7)). O

1.2.13 Proposition. — The functor
M X CLo — M X AT (F,.,Zﬂ) — (F,F@Of)
s an equivalence of stacks.

Proof. — As with (1.2.12), the proof of this statement will be given in the
appendix (see (iii) of (A.3.7)). O

1.2.14 Remark. — It would be preferable to have elementary proofs of (1.2.12)
and (1.2.13) which do not rely on the machinery of Faltings’ generalised Cartier
duality.

1.2.15 Example. — Let us now at least tell the reader that there do ex-
ist Lubin-Tate O-modules. First, if O = Z, then the p-power torsion in
Gn/spt(0)*

fipee = colim pyn C Gy/spi(0)
is a Lubin-Tate Z,-module and it also has the property that the multiplication

by p map p : pipee — pipeo reduces to the p-power Frobenius after base change
along Spec(F,) — Spf(Z,).
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In fact, for any O, given a generator 7 of the prime ideal p, there is a unique
(upto isomorphism) Lubin—-Tate O-module F, over Spf(O) with the property
that the endomorphism 7 : F,; — F; reduces to the Np-power Frobenius
map after base change along Spec(F,) — Spf(O) (see §3.5 Chapter VI [1]).
Moreover, there exists a unique isomorphism F, — Aépf(o) under which the
multiplication by 7 is represented by the power series [r](T) = 7T + TNP.

A consequence of this is that the morphism .#1r — Spf(O) admits a section.
The statement of (1.2.13) above can now be interpreted as saying that .y
is (in a stack theoretic sense) a torsor under the (stack theoretic) group %o
albeit a trivial one:

1.2.16 Corollary. — Fizing a Lubin—Tate O-module F over Spf(O) the func-
tor
CLo — My : L)S— Fs®o Z/S

s an equivalence of stacks.
1.2.17 Corollary. — Let Sy — S be a nilpotent immersion of p-adic sheaves.

The functor
.//ZLT(S) — ///LT(SO) F— FSO

s an equivalence of categories.

Proof. — This follows from (1.2.16) and the corresponding obvious claim for
€20 (which is a moduli space of pro-étale objects). O

1.2.18 Corollary. — Let f : F — F' be a homomorphism of Lubin—Tate
O-modules over S. Then there is a unique decomposition S = Sg) Ho<n<oo Spn
such that fs<0) is the zero map and such that ker(fspn) =Fs,. [p"] for 0 <n <
00.

Proof. — We have F' = F @0 .Z for some rank one O-local system .Z by
(1.2.13) and the homomorphism

fiF=>F®oZ
is of the form idr ®o h for some homomorphism
h: 63 — &

by (i) of (A.2.3).
Define the sub-sheaves Sy C S (resp. Syn C S for 0 < n < o) by the
property that hg, is the zero map (resp. hs,. factors as

Os,n — " ®0 Lsn — Lo,n

where the second map is multiplication). These definitions combined with
f = idr ®0 h show that fs(()) is the zero map that fg, = idpspn ®0 hs,n
factors as

pn

~ / /
Fs,n — Fg,, @op" = Fg,
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where the second map is multiplication and hence ker(fs,) = Fg, [p"]. More-
over, it is clear that Sy and all the Sy for 0 < n < oo are disjoint and so to
prove our claim we need to show that Sy llo<n<co Sy — S is an epimorphism.

For this we may localise S and assume that .# = Ogand h =a € O C GS(S).
Then either a = 0, in which case h is the zero map so that S(g) 58S, 0ra#0,
in which case a - O = p™ for some integer n > 0 and h = a factors as

Os = Os ®o p" — O,
so that Syn — S. It follows that S0y Ho<i<oo Spn = S. O

1.2.19. Classically one relates the reciprocity map of the local field K to
Lubin-Tate O-modules as follows. Write S = Spf(Okser) and let F be the
unique Lubin-Tate O-module over Spf(O) such that 7 : F — F reduces to
the Np-power Frobenius after base change to Spec(F,). Then for each r» > 0,
the O/p"-module F[p"](S) is free of rank one and colim, (F[p"](S)) — K/O
(non-canonically). We then obtain the character

pr: G(K*P/K) — li7gnAuto(F[p’"](S)) =lim(O/p")* = O*

r

defining the action of G(K*P/K) on colim,(F[p"](S)). The relationship be-
tween the character p, and the reciprocity map (1.1.3.1) is that for all o €
W(K*P /K) we have

o|gab = (7<) p (o)1 K2 /K) (1.2.19.1)

(see §3.7 Chapter VI of [1]).

We would now like to show how one can construct the reciprocity map of
local class field theory in a slightly more abstract but direct way using only
the Frobenius lift property (1.2.10) of Lubin-Tate O-modules and the ¢.Z o, -
torsor structure of .#r. Write S = Spec(Fy™) C S = Spf(Okser) and for a
Lubin-Tate O-module F — S write F = F xg S and F,. = F[p"] for each r > 0.

1.2.20 Proposition. — Let 0 € W(K*P/K) satisfy vk(c) =n > 0. Then

(i) for each Lubin—Tate O-module F over S there is a unique isomorphism
Ve : FRop™™ = o*(F) whose pull-back along S — S is the isomorphism
vpn 1 F @0 p~" = Fr"*(F) of (1.2.10),

(ii) there is a generator xk(o) € K* of p™, independent of ¥, such that for
all r > 0, the isomorphism induced by v, on the S-points of the p”-torsion
of F

F,(S) @0 b 5 0" (F,)(S)

s equal to

F(8) @op "D B (00(8)) = 0 (F,)(S),

(iii) if 7 € W(K®P/K) also satisfies vk (7) > 0 then in the notation of (ii) we
have xx(o71) = xx(0)xk(T), and
(iv) ok = (xxc(0), K*/K).
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Proof. — (i) The existence of vy» follows from (1.2.17) applied to the nilpotent
immersion S, — S and the fact that the restriction of o to S is equal to FrNe™,

(ii) For all » > 0 we have that F,.(S) is a free rank one Ok /p"-module and
so writing v, for the restriction of v, to the S-valued points of the p"-torsion,
we set

XKr(0) = Fr(a)_l oVsyr € Isomo(F,(S)®op ", Fr(9))
= Isomgo(F.(S),F,(S) ®0 p")
C p"®oO/p"

Then xx(o) is given by the limit lim, xx (o) € lim, p" ®o O/p" = p”. It is
a generator of p” as xk (o) is a generator of the free rank one O/p"-module
O/p” ®0 p" for all r > 0.

First, it is clear that yk(o) depends only on the isomorphism class of F.
However, by (1.2.13), every other Lubin—Tate O-module over S is of the form
F ®0 Z for some rank one O-local system .Z. But every rank one O-local
system & over Spf(Oksep) is pro-constant and isomorphic to 65. Therefore,
all Lubin-Tate O-modules over S are isomorphic and k(o) is independent of
the Lubin-Tate O-module F over S (admittedly there is only one!).

(iii) Write m = vk(7). Then the two isomorphisms

Vor and 77 (vg)o (vr @0 p™ ™)

between
Faop ™" — (0 o7)"(F) = 7"("(F)))
both pull-back to the isomorphism vyn+m of (1.2.10) along S — S. By the
uniqueness in (i) we get
Vor = T*(VO’) o (V‘r ®o p—m)
from which we find the relation xx(o7) = xx (o) xx (7).

(iv) With notation as in (1.2.19) take F' = Fr xgp¢(0)S. As 7" : Fr — Fy lifts
the Np"-power Frobenius endomorphism of Fr Xgp(0) Spec(Fy) the (unique)
isomorphism

Vo :FRop™ " = o*(F)
of (i) is given by
Foop ™ 2o F -2 o*(F) (1.2.20.1)
where d, : F — ¢*(F) is the descent isomorphism (coming from the fact that
F = Fr Xgpt(0) S is defined over Spf(O)). The isomorphism d, on the S-points
of the p"-torsion is given by

Jfl-ro
(@) Fr()

Fr(S) ™" Fr(01(8)) = o*(F+)(S)

so that v, on the S-points of the p” torsion is given by (cf. (1.2.20.1))

071- rlo
(@)~ Fr (o)

F.(S) @0 p ™ 5 F(S) " F.(01(9)) = o*(F,)(S).
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Therefore k(o) = pr (o)~ and by (1.2.19.1) we get
olgar = (1"pr(0) T K™/K) = (xx(0), K*/K).
O

1.2.21 Remark. — From (i), (ii) and (iii) of (1.2.20) we see that we can as-
sociate to any element of o € v' (N>q) C W(K*P/K) an element xx (o) € K*
and that this association is multiplicative. It therefore extends to a homomor-
phism

W(K*P/K) = K* : 0 = xk(0) (1.2.21.1)

and (iv) of (1.2.20) states that this map satisfies
ok = (xx(0), K*/K)

for all 0 € W(K*P/K). Thus we have derived the local reciprocity map
(1.1.3.1) using nothing more than the basic properties of Lubin—Tate O-modules
(in particular, the Frobenius lifting property (1.2.10) and the % .%o-torsor
structure of Z1r (1.2.13)).

1.2.22 Remark. — If K C L C K*P is a finite extension and F/Spf(Or) is
a Lubin—Tate O-module let us write

pr /0, * GK*P/L) 5 0
for the (continuous) character defining the action of G on

colim(F[p"] (Spt(Oxcer))) > K/O.

Then a continuous character p : G(K*? /L) — O* is of the form pg /o, if and
only if the diagram

—1

pF/OL
W /L) % o

BNy

KX
commutes where the right vertical map is the inclusion. We mention this
mainly as it is analogous to the classification of elliptic curves with complex

multiplication over fields in terms of their associated characters we will give
in Chapter 2 (see (iii) of (2.5.10)).

1.2.23 Remark. — Of course, the theory of Lubin—Tate O-modules and the
local reciprocity map are themselves not particularly complicated and one
can derive the reciprocity map in any number of ways. We believe the this
approach above has some advantages over the classical one, first and foremost
it is choice free, and secondly one gets the whole of the local reciprocity map
right of the bat, rather than first finding a character

pr : G(KSP /K) — O
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which one then restricts to W(K*P/K) C G(K**P/K), takes the reciprocal of
and then multiplies by the character

W(K*P/K) — K* : 0 s 7k(7),

The derivation of the local reciprocity map we have given is also analogous
to the derivation (2.5.9) of the global reciprocity map for imaginary quadratic
fields which we will give using CM elliptic curves in Chapter 2. Moreover, in
the case of CM elliptic curves and imaginary quadratic fields, the situation
is somewhat more delicate — one cannot just find CM elliptic curves with
suitable properties from which one can construct the global reciprocity map
in the same way one can with Lubin—Tate O-modules.

1.3. The global reciprocity map

In this section we recall the basic objects required to define, and then we
recall, the global reciprocity map (1.3.3) associated to a global field K.

1.3.1. Let K be a global field and fix maximal abelian and separable exten-
sions K € K# c K%P. Write Pk for the set of places of K, and as usual, if
K is a number field we identify the non-archimedian places v € Pk with the
prime ideals p C Oxk of the ring of integers of K. For v € K we write K, for
the completion of K with respect to v and if v is archimedian Ok, C K, for
the ring of local integers. We write @fg‘*‘ C Pk for the subset of archimedian
places (which is of course empty if K is a function field).

Let K € L C K®P be a finite Galois extension. If w € 47, is a non-
archimedian place and the extension L/K is unramified at w then we write
or/kw € G(L/K), or just oy, for the Frobenius element associated to w. If
L/K is abelian (so that oy, k., depends only on w|x = v € Pk) then we write
OL/K,v, O again just oy, for o, /K 4,

1.3.2. For each finite set S C Pk containing all archimedian places of K we
write I g for the topological group

ks= [] O x][[X:
VEPK—S vES
(the topology being the product topology). For S C S’ C Zk the inclusions

Ix,s C Ik g are open and the group of ideles of K is the topological group

Ix = co%im Ix s

(the topology being the colimit topology). The diagonal embedding K* — Ik
makes K* a discrete subgroup of Ix and the idele class group of K is the
quotient Cx = Ix/K*. The embeddings K;¢ — Ix — Cxk for each place v of
K make K a closed subgroup of Ix and Ck.



1.4. GLOBAL FIELDS WITH A SINGLE ‘INFINITE’ PLACE AND CLASS GROUPS 19

1.3.3 Theorem. — There is a unique continuous homomorphism

Ck — G(K*/K) : s — (s, K*®/K)
such that for each place v of K and each K-linear embedding K*® — K2P the
following diagram commutes

(—K=/K)
Ok ——" 5 G(K*/K)

T (—K35P/Ky) T

K ———— G(K2/K,).
Proof. — See §8§4—6 Chapter VII of [1]. O

1.3.4. We list the following further properties of the reciprocity map (see
§64-6 Chapter VII of [1]).

(a) If K'/K is any finite Galois extension, with maximal abelian extension
K2 the diagram

(—,K/ab/K/)
CK’ _— G(Klab/K/)

NK’/KJ{ l
(= K*/K)

Cx ——— G(K®*/K)

commutes (where N/ denotes the map induced by the norm I, — Ixk).

(b) The kernel of the reciprocity map is Ci C Ck (a superscript o denotes
the connected component of the identity of a topological group). If K is
a function field then C¥ is trivial and (—, K*"/K) is injective. If K is a
number field then Cy is the closure of the sub-group

H K;J(’OCCK

gparch
veEPY

and (—,K®/K) is surjective. We note that if 2% = {co0} contains
only one place then KX° = Ck and we obtain a topological isomorphism

~

Ck /K% =5 G(K*/K).

1.4. Global fields with a single ‘infinite’ place and class groups

In this section we describe a variant of the reciprocity map associated to
the maximal abelian extension K of a global field K which is totally split
at a fixed place oo satisfying 228 C {co}. If K is a function field then any
place oo satisfies the above property and if K is a number field then the only
possibilities are K = Q or K an imaginary quadratic and in each case oo equal
to the unique archimedian place of K.
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As mentioned in the introduction to this chapter, the fact that such pairs
(K, o0) should be considered along similar lines is due to Drinfel’d [18] and
essentially all we are doing here is collecting the relevant facts for use in
the later chapters. It is worth noting here that the abelian extensions of K
contained in K* have a long history mainly due to the fact that they are
amenable to explicit computation via the use of Drinfel’d modules in case K
is a function field, tori if K = Q and CM elliptic curves if K is an imaginary
quadratic field (what Drinfel’d originally called ‘elliptic modules of rank one’).
While we are only concerned with the final case in this thesis, the abstract
theory we describe below is valid for arbitrary pairs (K, 0o).

1.4.1. Let K be a global field, and fix a place oo of K such that 2%t C {o0}.
We call oo the infinite place, and the places in Pk — oo the finite places and
denote them by 32%“. As every place v # oo is non-archimedian the subset
Ok = {a € K:la|, <1forallv# oo} CKisa Dedekind domain, and its
prime ideals are in bijection with the set 9&“

The group of units Oy is finite and we denote its order by w. We want to
point out that for what follows in this section, and in the following chapters,
this fact is quite crucial. It implies in particular that given any ideal § there is
an ideal f|f’ with the property that §f separates units, i.e. the homomorphism

Ok — (Ok/f')*

is injective or what is the same Ofé’f/ = {1} (of course, if §f # Ok any high
power of f will do).

1.4.2. We write Ap, for the topological ring
licIlIlOK/a = HOKP’
p

the topology being the product topology or the inverse limit topology induced
by the discrete topologies on the finite sets Ok /a (they are the same). We
also view

A —hm (Ok/a)* HO

as a topological group via the topology induced from Ag,, the product topol-
ogy or the inverse limit topology (again they are one and the same). For each
integral ideal f we denote by Aéi the open subgroup

ker(AZ, — (Ok/f)%).

For each integral ideal a we equip

Aogla ' =TI K5 < [T 0%,

pla pfa
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with the product topology. If alb the inclusion Ag,[a"!]* C Ag,[b~1]* is
open and we equip

(Aox ®oy K)* = colim Ag, [a™']*
a
with the colimit topology. The natural map
Ik — (AOK ®oxk K)Xv

induced by forgetting the component at oo, is continuous and surjective and
induces topological isomorphism

Ik /K% — (Aog ®ox K)*.

1.4.3. We will now relate the group (Ao, ®o, K)* to certain class groups
associated to Ok. So let f € Ido, and let L be a projective rank one Ok-
module. A level-f structure on L is a surjective homomorphism a : L — Ok /f.
An f-isomorphism f : (L,a) — (L', a’) between a pair of projective rank one
Ox-modules with level-f structures is an Ok-isomorphism f : L — L/ such that
hoa = a. We denote by CLg)K the set of f-isomorphism classes of rank one
projective Og-modules with level-f structure. Equipping it with the product

(L7 a) : (L/7 CLI) = (L ®OK Lla a ®OK a/)7

CLg)K becomes a group, which we call the ray class group of conductor f.
If a is any fractional ideal prime to f, the multiplication map

a ®ox Ox/f = Ok /f

is well defined, and an isomorphism, so that setting f : a — Ok/f to be the
composition

a — a ®ox Ok /f — Ox/f (1.4.3.1)

equips a with a level-f structure. We write [a]; = (a,f) € CLg)K for the
corresponding class. This defines a surjective homomorphism

14 — CLY) : a v [a);

whose kernel is the group Plringf)n[10 dj of principal fractional ideals a = Og mod

f admitting a generator a € K* with a = 1 mod §. If f|f' then
CLY) — CLY) : (L,a) = (L,a mod )
defines a surjective homomorphism and we define the topological group

CLog o0 = lim CLY)

(the topology being the inverse limit of the discrete topologies on the CLg)K).
Finally, if f = Ok then we identify CL8§ with the class group CLo, of Ok.
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1.4.4. Given an element s € (Ao, ®o, K)*, we write (s) € Idk for the

fractional ideal
(s) = [ o).
p

For each integral ideal f, we equip (s)~! with the level-f structure
(s)_1 > Ao, — Ok /f

and write [s]; € CLg)K for the corresponding class. This defines a continuous
surjective homomorphism

(Ao ®ox K)* — CLg)K s> [ss

with kernel K* - AST. Finally, if f|j’ the image of [s}y under CLY) — CLJ)
is [s]j and so taking the limit over § we obtain a homomorphism

[—] : (Ao ®ox K)* — CLog 00 = li%n CLox(f) : s+ [s] = li{n[s]f. (1.4.4.1)
1.4.5 Proposition. — The map [—] is continuous and the sequence

0= K* = (Aoy ®ox K)* = CLoy oo — 0
18 exact.

Proof. — 1t is clear that s + [s] is continuous (as s — [s]; is continuous for
each f) and if we can show that ker(s — [s]) = K* then the surjectivity of
s — [s] follows as s +— [s]; is surjective for each f and (Ag, ®o, K)*/K* =
Ck/KZ is compact.

The kernel of s+ [s] is equal to

(ker(s — [s]) = [ K" - AS).
f f

If s is an element of this kernel then for all integral ideals f we can write
s = a;s; where a; € K* and s; € Aéi. The elements a; and s; are unique upto

scaling by an element of Oﬁ’f so that if f separates units both a; and s; are
unique, and moreover equal to ay and sy for any integral ideal * divisible by
f. Fixing such an f it follows that

spe(Ag) = {1}
il

so that s = a;s; = a5 € K* and we are done. O

1.4.6 Remark. — The exactness of the sequence (1.4.5) is the first result of
many that will rely crucially on the fact that the unit group Oy is finite.
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1.4.7. We write K*/K for the maximal abelian extension of K which is
totally split at oo. The kernel of the surjective map

Ck — G(K*/K)
is precisely KX (cf. (b) of (1.3.4)) so that we obtain continuous isomorphisms
(Aok ®ok K)™ /K™ = I/ (K*KZ) = Cx /K5, = G(K™/K).
Let us write
(—, K®/K) : (Aog ®oy K)*/K* — G(K*/K). (1.4.7.1)
for this isomorphism and also

0k : CLoy 0o — G(K™/K) (1.4.7.2)
for the isomorphism
CLogro <= (Aog 0y K)*/K* 5 Gk /K)
so that for all s € (Ag, ®o, K*)/K* we have
Ox([s]) = (s, K=/K).
If f is an integral ideal of Ok then, under 0k, the kernel of the homomorphism
CLoy,00 — CLY)

corresponds to the subgroup G(K*/K(f)) ¢ G(K*°/K) of automorphisms
fixing a certain finite abelian extension K C K(f) € K® which we call the
ray class field of conductor f. By definition the map (1.4.7.2) induces an
isomorphism

Ok : CLY % G(K()/K). (1.4.7.3)
The extension K(f)/K is unramified away from f and if p is prime to f then

Ox (1)) = Oxc3([7]f) = oy /xp

where 7 € K C (Ao, ®0, K)* is any local uniformiser. In particular, when
f = Ok the field H := K(Ok) is called the Hilbert class field. It is unramified
everywhere and the isomorphism

Ok 0y 1 CLo, — G(H/K)

maps the class of the inverse of each prime ideal [p~!] € CLo, to the Frobenius
element oy /K p-

1.4.8 Remark. — For future reference we make the following observations.
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(a) The composition
AST /08T = (A @0, K)/K* T CLoy oo % QK /K)
induces an isomorphism
AST/ORT 5 G(K™/K(F) € G(K®/K), (1.4.8.1)

In particular, when f separates units we have Oﬁ’f = {1} so that (1.4.8.1)
becomes

Ak = GI®/K(R).
(b) For each prime p of Ok and each K-linear embedding K5 — K™, the

map
_7Kal) K — Koo "~
K; S g i) - G KR) TS G /K) S CLoy

is given by
a — [a (1.4.8.2)

where we view a € K;° C (Agy, ®o, K)*.

1.5. Class stacks

We now extend the definition of the level-f structures on Og-modules to
level-f structures on Ok-local systems over sheaves and give several basic re-
sults concerning them and their moduli stacks.

1.5.1. Solet S be a sheaf over Spec(Ox) (this is technically not important for
what follows) and consider the constant sheaf of rings Ok on S associated to
Ok. If L is any Og-module we write Lg for the corresponding constant Ok -
module. If F and G are two Ok -modules over S we write F ®o, G for the
tensor product F PO, G and if G Lg for some Og-module L we just write

F ®ox L. We also write HomS (F,G) for the sheaf of Ok -homomorphisms
F— G.

1.5.2. A rank one Ok-local system on S is a sheaf of Ok ¢-modules £ over
S such that there exists a cover (S; — S)Zel, rank one projective Ox-modules
(Li)ier and Ok g-isomorphisms L xgS; — Lig . The moduli stack of rank
one Ok-local systems over Shp, is denoted by %3 Ok- We list the following
(usual) constructions and properties of Ok-local systems.
(i) The tensor product .£ ®¢, £’ of two rank one Ok-local systems .Z and
Z' is again a rank one Og-local system.
(ii) The sheaf of Okq-homomorphisms HomS (Z Z') is again a rank one
Ok-local system and defining £V := HomS (2, Okg) we have £ @0y
2LV 5 Homd® (£, 2.
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(iii) The sheaf of automorphisms Aut(SDK (Z) of a rank one Ok-local system
% is isomorphic to Ok -

v e sheal of Ok-1somorphisms Isom , 1s inite and étale over

(iv) The sheaf of Og-i phisms Isom{¥ (%, %) is finite and étal S
and . and .’ are locally isomorphic on S if and only if Isom(s)‘K (&, <" —
S is an epimorphism if and only if the action of %S on IsomSOK (&, <) —
S makes it a torsor.

(v) Every rank one Ok-local system is, locally on S, isomorphic Lg for some
rank one projective Og-module L whose corresponding class in CLo, is
independent of the choice of L. Thus given an Og-local system . on S
one obtains a section cy /g € CLoy (S), or what is the same a map

Cos: S — CLoy

from S to the constant sheaf over Spec(Ok) associated to the group
CLo,. Moreover, if one chooses representatives L of each class [L] €
CLo, and considers the rank one Ok-local system over CLq,:

[L]Y .= H L— H Spec(Oxk) = CLoy
[LJECLo, [L]ECLo,

then Isom(s)K (Z,c%y, /S([L]u“i")) is an %S—torsor whose corresponding
class in H*(S, Ofés) we denote by pg/g. The resulting map

£ (cys,pgss) € CLok(S) x Hl(S,%S)

defines a bijection between isomorphism classes of rank one Og-local
systems over S and the set CLo, (S) x H(S, OIX(S).

1.5.3. Iffis an integral ideal of Ok a level-f structure on a rank one Ok-local
system Z over S is an epimorphism of Oxg¢-modules « : = OL/fs' An
f-isomorphism f : (£, a) — (£, ') of rank one Ok-local systems of over S
equipped level-f structures is an Og-linear isomorphism f : . — %’ such
that o/ o f = . With this definition every (£, «) is, locally on S, of the
form (Lg, ag) for some (L,a) € CLg)K. When working with rank one Oxk-local
systems we will often drop explicit reference to the level-f structure when it is
clear from context. We list the following (usual) constructions and properties
of Oxk-local systems with level-f structure.

(i) The tensor product .Z ®o, £’ of two rank one O-local systems (.Z, «)
and (&, /) equipped with level-f structures is again a rank one Og-local
system with level-f structure given by a ®o, «'.

(ii) The sheaf of Okg-homomorphisms HoimgK (&, ") is again a rank one
Oxk-local system with level-f structure given by

Hom{¥ (& @0y Ox/f, &' ®oy Ox/f) — H()irIng(OK/vaOK/fS) = Ox/fg
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and equipping £V := mgk (Z, Okg) with this level-f structure makes
L' ®oy LY = Hom{¥ (Z,.£") is an f-isomorphism.

The sheaf of f-automorphisms M(Sf) (Z) of a rank one Ok-local system
(&, a) with level-f structure is equal to (Og /f)XS and in particular is
trivial if § separates units.

The sheaf of f-isomorphisms mg) (&, %) between two rank one Oxk-
local systems with level-f structure is finite and étale over S and ¥ and
' are locally f-isomorphic if and only if mg) (Z,¢") is an Oﬁ’fs—
torsor.

Every rank one Ok-local system with level-f structure is, locally on S, §-
isomorphic (Lg, ag) for some rank one projective Ox-module with level-f
structure (L, a) whose corresponding class in CLg)K is independent of the
choice of L. Thus given an Og-local system .Z on S one obtains a section
cys € CLg)K (S), or what is the same a map

Cg/s7f 1S — CLg)K

from S to the constant sheaf over Spec(Og) associated to the group
CLg)K. Moreover, if one chooses representatives (L,a) of each class
[L,a] € CLg)K and considers the rank one Oxk-local system with level-

f structure over CLg)K:

Lo = J] @a— J] Spec(Ox)=CLY
[L,a]eCLoy [LajecLy)

then Isom(sf) (Z,c%, /S([L, a]"™V)) is an Oﬁ’fs-torsor whose corresponding

class in H'(S, Oﬁ’fs) we denote by pg/g;. The resulting map

L= (cysp P8y € LgL(S) X H1(57%S)

defines a bijection between isomorphisms classes of rank one Oxk-local
systems over S and the set CLo, (S) x Hl(S,OIX(’fS). In particular, if f

separates units then H!(S, Oﬁ’fs) =0 and the map

L Cy/sf € CLg)K (S)

defines a bijection between f-isomorphism classes of rank one Ox-local
)

"

If f separates units, (&, «) is an Ok-local system equipped with a level-f
structure and S is connected, then (£, a) — (Lg,ag) for some rank

one projective Ox-module with level-f structure and in particular, .Z is

systems with level-f structure over S and elements of CLg

constant.
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1.5.4 Corollary. — The map
€20 — CLY) : 2/Sws cyps € CLY) (9)

K

identifies CLg)K with the coarse sheaf of%.,?g)K and is an equivalence whenever

f-separates units.

Proof. — This follows from the remarks (1.5.3). O






CHAPTER 2

ELLIPTIC CURVES WITH COMPLEX
MULTIPLICATION

In this chapter we develop the general theory of (families of) elliptic curves
with complex multiplication by the ring of integers Ok of a fixed imaginary
quadratic field K, here on called just CM elliptic curves. In §1 we recall several
standard results from the theory of (families of general) elliptic curves. In §2
we define the notion of a family E — S of CM elliptic curves, the corresponding
moduli stack .Zcwn, and we show that (just as with Lubin—Tate O-modules)
the moduli stack €.Z o, of rank one Ok-local systems acts in a natural way
on the moduli stack .Zcy of CM elliptic curves. We then describe, for a prime
p C Ok, the properties of the p-power torsion subgroups E[p*>°] C E of a family
of CM elliptic curves and show that when S is a p-adic sheaf E[p>] is a Lubin—
Tate Ok,-module. In §3 we consider CM elliptic curves over complex and
p-adic bases and give CM analogues of the classification of elliptic curves over
complex bases, and theorem of Serre-Tate describing deformations of elliptic
curves over p-adic bases. In §4 we show that any two CM elliptic curves over
the same base are locally isogenous and from this deduce that the action of
C Loy on Mcwm gives A cw the structure of a torsor. In §5 we derive the global
reciprocity map associated to the maximal abelian extension of K (totally
split at oo — but this is a vacuous condition) directly from the stack .#Zcy in
a manner quite analogous to the derivation of the local reciprocity map via
the moduli stack of Lubin—Tate O-modules. We then classify all CM elliptic
curves over fields (both of characteristic zero and finite characteristic) and
prove some results regarding good reduction. In §5 we define level-f structures
for CM elliptic curves and consider the corresponding moduli stacks ///é?/[
As with .#cw and €2 0,, we show that ,///glz/[ is a torsor under %fgi{ (at

least after inverting f). Using this we show that the coarse sheaf of ///é?/[ is

isomorphic to Spec(Okj)[f~*]) where K(f) is the ray class field of conductor f.

We should point out that, aside from the € .%o, -torsor structure of .Zc,
consistently working over a general base (instead of a field) and our derivation
of the reciprocity map, almost everything in this chapter is probably more or
less already known. This combined with the fact that .#cy is zero dimensional
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over Spec(Oxk), the advantages of our general approach may be somewhat un-
clear. However, while .#Zc is geometrically rather simple, it is arithmetically
quite complicated and the general approach we take in this chapter will al-
low for great deal of flexibility later when we wish to study some of its finer
arithmetic properties.

2.1. General elliptic curves

We now recall the definition of a family of elliptic curves over a sheaf S and
recall several standard results. In particular, the fact that the moduli stack
of elliptic curves is indeed a stack, the rigidity principal for homomorphisms,
the representability of Isom sheaves, Grothendieck’s formal GAGA, the classi-
fication of elliptic curves over complex schemes S in terms of rank two Z-local
systems over S, the Serre-Tate theorem, and the criterion of good reduction.

2.1.1. Let S be a sheaf. An elliptic curve over S is a sheaf of groups E — S
which is relatively representable, smooth of relative dimension one, proper
and geometrically connected. A morphism is of course a homomorphism of
the underlying (sheaves of) groups over S. For many more general properties
and constructions related to families of elliptic curves E — S we refer the
reader to the wonderful book of Katz-Mazur [24].

If S is a sheaf we write ElI(S) for the category of elliptic curves over S and
we denote by .#g) the fibred category over Sh whose fibre over a sheaf S is
the category elliptic curves E/S together with their isomorphisms.

2.1.2 Proposition. — The fibred category gy is a stack over Sh.

Sketch. — If S is an affine scheme and f : E — S is a family of elliptic
curves let S5 C Ok denote the ideal sheaf defining the zero section S — E
(it is a locally free rank one @g-module). The quasi-coherent fg-module
Ws = f*(fE_/?’S) is a vector bundle of rank three, the morphism

F1(Ig8) = T

is an epimorphism and defines a closed immersion wg/g : E — P(#f/g). Both
the vector bundle #% /g and the morphism wg/g are functorial in S so that
by descent if E — S is any family of elliptic curves over a sheaf S then there
is a unique vector bundle #f g of rank three over S together with a closed
immersion wg/s : E — Ps(#g/g) compatible with those defined when S is
affine.

Now if S is an sheaf and (f; : E; — S;)ier is a family of elliptic curves
equipped with descent data relative to a cover (S;);ecr of S then the E; descend
to a sheaf of groups E — S, the vector bundles #%, /5, to a vector bundle #% /g
and the closed immersions wg, : E; — P(#%, /s,) to a closed immersion

WEg/s : E— P(WE/S)
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This shows that the morphism p : E — S is representable (in fact projective)
and by descent it follows that E — S is also smooth of relative dimension one,
proper, and geometrically connected so that E — S is an elliptic curve over
S. O

2.1.3. Here we recall several useful properties enjoyed by homomorphisms of
elliptic curves.

2.1.4 Proposition. — Let S be a sheaf and let E — S be a family of elliptic
curves. For each n > 1 multiplication map n : E — E is finite locally free of

degree n?.

Proof. — This is Theorem 2.3.1 of [24]. O

2.1.5 Proposition (Rigidity). — If f : E — E’ is a homomorphism of
elliptic curves over a sheaf S there is a unique decomposition S = I,>0S(y)
with the property that f xsS(g) is the zero map and such that f xsS,) is finite
locally free of degree n for n > 1. In particular, if f,g: E — E' are a pair of
homomorphisms of elliptic curves and S — S is a morphism of sheaves which
is surjective on geometric points then f = g if and only if f xgS = g xg 5.

Proof. — The first statement is Theorem 2.4.2 of [24]. For the second state-
ment the only if direction is clear, so assume that f xgS’ = g xgS’. The claim
is local on S and S’ and so we may assume that they are affine schemes. If
Sy C S and Sl(o) C S’ denote the open and closed sub-schemes where f — g
and f xg S — g xg S’ are equal to the zero map respectively, then S’(O) — S
factors through Sg). However, S, = S, so that as S" — S is surjective on

geometric points, it follows that Sy = S. O

2.1.6 Remark. — We will make much use of (2.1.5) and when doing so just
say ‘by rigidity’.

2.1.7 Proposition. — For each pair of elliptic curves E and E' over a sheaf
S the sheaf Isomg(E, E) is finite and unramified over S.

Proof. — The claim is local on S so we may assume that S is an affine scheme
and this is Proposition 5.3 (i) of [15]. O

2.1.8. Let A be a noetherian ring complete with respect to the I-adic topology
for I C A an ideal and write Spf(A) = colim,>o Spec(A/I"™!) C Spec(A).

2.1.9 Theorem (Formal GAGA). — The functor
Ell(Spec(A)) — El(Spf(A)) : E/Spec(A) = E Xgpec(a) SP(A)
induced by base change is an equivalence of categories.

Proof. — This is an easy application Grothendieck’s formal GAGA (in par-
ticular Corollaire 2 and Théoreme 4 of [23]). O
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2.1.10. The following is taken from N2 2 of [16]. Let S be a locally finitely
presented Spec(C)-scheme and let f : E — S be an elliptic curve. The ana-
lytification f2" : E* — S?" is an analytic space over S*" which is smooth of
relative dimension one and proper with connected fibres. There is a canonical

exact sequence, the exponential sequence, of sheaves on the big analytic site
of Xan

0 — TZ(E) — @Ean/san — Ean — 0

(we view Liegen/pan as a rank one locally free sheaf of Ogan-modules on the
big analytic site of S) with Tz(E) a rank two Z-local system on S*". Denote
by Lat(S®") the category of pairs (T C #) where ¥ is a locally free rank one
Ogan-module and T C ¥ is a rank two Z-local system which is fibre-wise over
S discrete in 7.

2.1.11 Proposition. — The functor
EH(S) — Lat(san) . E/S — (TZ (E/S) C @Ean/san)

s an equivalence of categories.

2.1.12. Let p be a rational prime and S a p-adic sheaf (i.e. a sheaf over
Spf(Z,) = colim, Spec(Z/p"*!)). A p-divisible group over S is an sheaf of
groups F — S such that the multiplication map p : F — F is representable,
finite locally free and faithfully flat and such that colim, ker(p™) = F. If E is
an elliptic curve over S we write E[p>°] for the p-divisible group colim,, E[p"].

Let Sg — S be a nilpotent closed immersion of p-adic sheaves and consider
the category D(S,Sy) whose objects are triples (E/So, F/S, p) with

(i) Eo/So an elliptic curve,
(ii) F/S is a p-divisible group, and
(iii) p: Eo[p™] — F xg Sp an isomorphism of p-divisible groups,

and whose morphisms (Eq/So,F/S, p) — (E'/So, ¥, p') are pairs (f, g) where
f : E — E' is a morphism of elliptic curves, g : F — F’ is a morphism of
p-divisible groups such that

(9 %3 S0) o p=p"0 flpee)-
2.1.13 Theorem (Serre-Tate). — The functor
EII(S) — Dy(S,80) : E/S = (E x5 So/So, E[p™]/S, idgpe~)ls,)
s an equivalence of categories.

Proof. — A short argument using (2.1.2) reduces us to the case where S is an
affine scheme and this case is the content of the Appendix of [19]. O]
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2.1.14. Let S be a Dedekind scheme, i.e. a one dimensional, regular and irre-
ducible scheme. Let f : Spec(K) — S be its generic point and let E/Spec(K).

2.1.15 Theorem (Néron models). — The functor X/S — E(XxgSpec(K))
on smooth schemes over S is representable by a smooth, one dimensional group
scheme Nérg(E)/S. Moreover, if S' — S is an étale map of Dedekind schemes
and Spec(K') — S’ is the generic point of S' then

Nérs (E) XS S/ = Nérs/ (E XSpec(K) Spec(K')).

Proof. — Representability of the functor is Theorem 3 §1.4 Chapter 1 of [9]
and compatibility with étale base change is Proposition 2 (b) §1.2 of [9]. [

2.1.16 Theorem. — Let L/Q be a finite extension, v a place over QP lying
over the prime p of O1, with residue characteristic p > 0 and let E/L be an
elliptic curve. Then Néro, ,(E) — Spec(Ov,) is an elliptic curve if, for some
prime | # p, the action of the inertia group I, C G(Q*P/L) on E[I*°](Q®P) is
trivial.

Proof. — This follows from Theorem 1 of [31]. O

2.2. Elliptic curves with complex multiplication

In this section we define families of elliptic curves with complex multiplica-
tion by the ring of integers Ok of an imaginary quadratic field K or, for short,
CM elliptic curves. We give analogues for CM elliptic curves of several of the
results of (1.2) given for Lubin-Tate O-modules. In particular, we consider
the moduli stack .#Zcn of CM elliptic curves and show that the stack €% o
of rank one Ok-local system acts on .#Zcn.

2.2.1. For the remainder of this chapter we fix an imaginary quadratic field
K = Q(v/—d) for d € N square free and with ring of integers Ox. We note that
K has only one archimedian place oo and so (K, 00) satisfies the conditions
of (1.4.1) and we shall make use and notation (and in later sections theory)
set up in §1.4 of Chapter 1. As Ko, — C is algebraically closed every finite
extension of K is totally split at infinity so that K> = K2P, although we shall
continue to use the notation K*. The unit group Oy is finite and is equal
to {1} unless K = Q(py) for n = 4,6 in which case Of = p,. The unique
non-trivial automorphism of K/Q is denoted by a — a. We shall be working
solely in the category Shp, and so by a sheaf S we will mean a sheaf over
Spec(Ox). In particular, to simplify some of the notation we will write X x Y
for the product X Xgpec(oy) Y in Shoy-
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2.2.2. An elliptic curve with complex multiplication by Ok over S, or for
short a CM elliptic curve over S, is an elliptic curve E — S (2.1.1) equipped an
Ok ¢-module structure which is strict with respect to the morphism Oxg — Os
coming from the structure map S — Spec(Ok) (cf. (A.2.4)). A morphism
of CM elliptic curves over S is just a homomorphism of Ok¢-modules. For
a € Oky(S) we write [a]g : E = E, or just @ : E — E, for the corresponding
endomorphism (in particular for a € Ox C Ok¢(S)).

Finally, we write CM(S) for the category of CM elliptic curves over a sheaf
S and we write .#c\ for the stack over Shp, whose fibre over S is the category
of CM elliptic curves over S together with their isomorphisms.

2.2.3 Proposition. — For any CM elliptic curve E/S the morphism
Ok — Endg¥ (E)
is an isomorphism.

Proof. — The claim is local on S so may assume that S is an affine scheme.
That Oy — MSK(E) is injective follows from the fact that both Zg C Ok
and Zg — Endg(E) are monomorphisms. By Corollary 1, §4 of [31] the map
Okg — LMSK (E) is an isomorphism when evaluated on any closed point
Spec(k) — S. Therefore, if f : E — E is any morphism, for each closed point
h : Spec(k) — S there is an element oy, € Ok such that (f — [ap]E)[spec(r) = 0
and by rigidity (2.1.3) there is an open (and closed) neighbourhood Spec(k) —
U C S such that (f — [ap]r)|u = 0. It follows that

O
Okg — Endg™(E)
is an epimorphism and so is an isomorphism. O

2.2.4 Proposition. — Let E/S be a CM elliptic curve and £ /S a rank one
Ox-local system. Then E ®o, £ is a CM elliptic curve over S.

Proof. — The claims are all local on S so we may assume that S is an affine
scheme. It follows from (A.2.6) that, at least locally on S, E ®o, -Z is rep-
resentable by a proper, smooth, geometrically connected group scheme. It
follows from (A.2.3) that, when this is the case, the Lie algebra of E ®¢, £
is locally free of rank one so that the relative dimension of E ®o, £ — S is
also one. Therefore E ®o, Z is, locally on S, an elliptic curve so that it is in
fact an elliptic curve over S as the moduli stack of elliptic curves is a stack.
Finally, E ®0, £ has an obvious structure of an Ok -module and it follows
from (A.2.3) that it is strict. O

2.2.5 Remark. — By (2.2.4) above we find a functor

Meri X CLo — Meri : (B/S,.Z[S) = E@o, L/
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which we may view as defining an action of €20, on .#Zcnv. We will show
later (see (2.4.4)) that, as with Lubin—Tate O-modules, this makes .Zcy a
torsor under €.Z oy

2.2.6 Corollary. — For each pair £, %" of rank one Ok-local systems over
S and each pair E,E' of CM elliptic curves over S the natural map

Hom{* (E, E') ©0, Hom™ (%, .£") — Homg® (E @0, £, E @0y £)
is an isomorphism.
Proof. — This follows from (A.2.3). O

2.2.7 Remark. — The isomorphism of (2.2.6) together with (2.2.3) gives the
=L

particularly simple formula when E = E' and £ = Ok and ¢ g

Lg —5 Hom* (E,E @0y L) : 1+ idp @oy 1.

2.2.8. For each integral ideal a C Ok we write

i : E = E®o, a !

for the homomorphism induced by the inclusion Og — a~!. We define the
a-torsion in E to be E[a] = ker(iq). We have Ela] = Ngeqker(a) so that
Ela] = ker(a) if a = (a) is principal.

2.2.9 Proposition. — The homomorphism i, : E — E ®¢, a~! is finite
locally free of degree Na.

Proof. — If S is empty or if a = Ok the claim is obvious so we assume that
S # () and that a # Ok. Using (2.2.7), the morphism i, is equal to the zero
map only if S = (), and it is an isomorphism if and only if a = Ok or S = ().
Therefore, as a # Ok and S # (), the morphism i, is finite locally free of degree
greater than one.

As tensoring with rank one Ok-local systems is exact (A.2.2) the kernel of
ia ®0y b1 is E[a] ®0, 7! and as Ok /a ®o, b~! — Ok/a (non-canonically)
for all pairs of integral ideals a, b we have

E[a] ®0, b7 — Ela].
Therefore deg(iqs ®0, b~) = deg(is) and
deg(iqp) = deg((ip @0 b~ 1) 0ip) = deg(i) deg(i).

As Nab = NaNb and deg(iqp) = deg(iq) deg(ip) we may assume that a = p is
a prime ideal in which case we find

deg(iy) deg (i) = deg(iys) = deg([Np]r) = Np®.

If p = p then deg(ip)? = Np? and so deg(iy) = Np and if p # p then, as Np is
prime and as both deg(iy), deg(i5) # 1, it also follows that deg(iy) = Np. [
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2.2.10. We associate the following sheaves of groups to E/S:

(i) For each maximal ideal p C Ok the p-divisible group of E is the ind-finite
locally free group scheme E[p™] := colim, E[p"]. It is a lim, Ok /p"S—
module.

(ii) The torsion subgroup of E/S is

E[tors] := colaim Ela] = @ E[p*].
p
It is a limg Ok /a -module.

iii e formal group o is E := co img In cf. A.1.2). It is a strict
iii) The formal FE/Sis B := colimy, Inf$) (E) (cf. A.1.2). T
formal Ok -module of dimension one.

2.2.11 Proposition. — Let E/S be a CM elliptic curve and p C Ok a prime
ideal. Then

(i) p is invertible on S if and only if E[p] is finite and étale over S. In
this case, E[p>] is étale over S and is locally isomorphic to the constant
lim,, OK/p”S—module

collim p"/Okq = KP/OKpS,

and
(ii) p is locally nilpotent on S if and only if E[p™] = E. In this case, E[p*]
is a Lubin-Tate Ok, -module over S.

Proof. — The claims are true if and only if they are locally on S and so we
may assume that S is an affine scheme.

(i) As iyn is finite locally free of degree Np™ (in particular, faithfully flat)
its kernel E[p"] is étale over S if and only if the morphism E — E ®¢, p~"
is étale, or equivalently, induces an isomorphism Lieg,q — @E(@OKp—l /s =
@E/S R0k p~! and this is true if and only if p is invertible on S.

For the second claim we may, after localising S, assume that E[p°°] is con-
stant and hence that E[p"] is constant for all n > 0. For each n > 0 let E,, be
a finite Og-module with E[p"] — Eng for n > 0. For n > 0, E,, is an Ok /p"-
module and the p”-torsion of colim,, E,, is equal to E,. As #E, ;1 = Np"t!
if B, 41 is not a free rank one Ok /p™*!-module it must consist of p"-torsion
and therefore E, 11 C E,, but #E,, = Np" so that this is impossible. It follows
that for each n > 0 the Ok /p™-module E, is free of rank one and the inclu-
sions E,, — E, 1 identify E, with the p™-torsion of E, ;1. Therefore, we may
fix isomorphisms E, — p~"/Ox for all n > 0 with the property that the
inclusions E,, C E, 11 become the natural inclusions p~"/Ok C p~"!/Ok.
Thus

E[p™] = colim p~"/Okq-
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(i) First assume that E = E[p*°]. Then S — Spec(Oxk) factors through
Spf(Ok,) = colim Spec(Ok /p™ ™) — Spec(Oxk)

if and only if S x Spec(Ok[p~!]) = . Thus we may assume that S = S x
Spec(Ok[p~']) and show that it is empty. By (i) the sheaf E = E[p™] is
étale over S. In this case it follows that, for all k¥ > 0, the scheme Infék) (E)
is unramified over S as it is a sub-scheme of the étale scheme E = E[p°].
Therefore, the morphism defining the zero section S — Inf(sk) (E) is both a
nilpotent immersion and an open immersion which is possible if and only if
S = Infék) (E) and this is possible if and only if S = {).

Conversely, assume that S — Spec(Ox ) factors through Spf(Ox,) C Spec(Ox)
and write ]/E\J[p”} = ker(f) — E@oK p~™). As S is affine it follows that p is nilpo-
tent on S and as the action of Oky on E is strict it follows that

co}lim E[p"] =E
(just as in the proof of (i) of (1.2.5)). In particular, E C E[p™] and the strict
Okg-module structure on E extends uniquely to a strict lim,, O/ p”s—module
structure.

We are now reduced to showing that for each r > 0 the zero section S —
E[p"] is a nilpotent immersion as this will give E[p"] C E. As S x Spec(Fy) — S
is a nilpotent immersion, we may replace S by S x Spec(F}) and assume that
S has characteristic p. From (iii) of (1.2.5) we find closed immersions

Np” Brar r
ker(FrE/s) C E[p"] C E[p"].

But, as E is a smooth formal group of dimension one, ker(Frg‘/’;) is finite locally
free of rank Np”, as is E[p"]. Therefore the closed immersion
Npr r
ker(FrE/S) C E[p"]
is an isomorphism. It follows that S — E[p”] is a nilpotent immersion, so that
E[p"] C E, and therefore
E = E[p™].
This proves the first claim. For the second, the sheaf of groups E= E[p™] is
a strict formal Ok, -module of dimension one. Moreover, as E = E[p>] we
have
ker(ip : E — E®o, p ') = Elp]
so that
ip : E = E®oy, pt

is finite locally free of degree Np. This is precisely the definition of a Lubin—
Tate Ok,-module (1.2.6). O

2.2.12 Corollary. — Let E/S be a CM elliptic curve.
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(i) The morphism ISﬂgK (El[a],Ok/a;) — S is affine and étale, factors
through Sla™!] = S x Spec(Ok[a™!]) C S and defines an affine étale
cover

Isomg™ (Ela, Ok /a) — S[a™").

(ii) If P C Idoy is any set of ideals which do not admit a common divisor

the family
(150m* (Efa], O /a) — S)acp

is an affine étale cover of S.

Proof. — (i) If there exists an isomorphism Et[a] — Og/ a, over some
affine S-scheme T then Et[a] is étale, so that by (i) of (2.2.11) the map
T — S factors through the affine étale sub-scheme S[a~!] C S. Tt follows
that MSK (E[a], OLNS) — S factors through S[a~!] and so base changing

along S[a~!] — S we may assume a is invertible on S.

Applying (i) of (2.2.11) to the prime power divisors of a we find that E[a]
is locally isomorphic to a=!/Ok 5 which is isomorphic to Ms' This shows
that

Isomg™ (E[a], Ok /a ) —
is an epimorphism so that by descent, to show that it is finite and étale, we
may assume that E[a] = Ok/a ag. In this case we have

IsomS (Ok/ag, Ok/ay) = (OK/C‘)XS

and the claim is clear.
(i) The hypothesis on P implies that (S[a~!] — S)qep is a cover of S so that

this follows from (i). O
2.2.13 Corollary. — For eachn > 0 there is a unique isomorphism of func-
tors

Upn 1 — R0y p" s eV ()

on Mcwm % Spec(Fy) such that for all CM elliptic curves E over characteristic

p-sheaves S the diagram
N
/ \E‘/S

E®o,p™" —> Fer*
commutes.

Proof. — The two homomorphisms i,» and Fr /g are finite locally free of
degree Np"™ so we need only show that their kernels are equal. As p is nilpotent
on S, we have E = E[p*] and E is a Lubin-Tate Ok,-module by (ii) of (2.2.11)
so that by (1.2.9) we find

ker(Fryhg) = ker(Fr}" 5 o) = E[p"] = E[p"] = ker(ipn).
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O]

2.2.14 Remark. — The above (2.2.13) is the first indication that the moduli
stack .#cn should admit a A-structure.

2.2.15 Corollary. — Let f : E — E' be a homomorphism of CM elliptic
curves over S. Then there is a unique decomposition S = oy S(a)y such fS(O)
is the zero map and such that ker(fs ) = Es [a] for all (0) # a C Ok.

Proof. — By rigidity we may decompose S as Sg) Il Sisog Where fs(o) is the
zero map and where fg,_ is finite locally free of positive degree. Thus we may
replace S by Sisog and assume that f is finite locally free. Then ker(f) C E[tors]
and

ker(f) = @ker(fp)
p

where f, : E[p™°] — E/[p] is the restriction of f to the p-divisible groups. As
ker(f) is finite locally free so is ker(f,) for all prime ideals p.

The claim is local so we may reduce to the case where S = Spec(A) is an
affine scheme and, by passage to the limit, to when S finitely presented over
Spec(Ok). As S is noetherian it admits a finite cover by connected affine
schemes and so we may assume that S is connected. In this case, the finite
locally free group schemes ker( f,) have constant degree and we are reduced to
showing that, locally on S, there exists an integer n > 0 such that ker(f,) =
Efp"].

We continue to localise S and so assume that S = Spec(A) for A a lo-
cal noetherian ring with maximal ideal I and by descent that A is I-adically
complete. As E and E[p"] and ker(f,) are all proper over S to check that
ker(f,) = E[p"] for some n we may, by Grothendieck’s formal GAGA, replace
S by Spec(A/I") for each r > 0 and assume that S = Spec(A) where A is an
artinian local ring. If p is invertible in A then E[p>°] is locally isomorphic to
the constant group scheme

by (2.2.11), from this and the corresponding fact for K,/Ok,, we see that
any finite locally free Ok (-sub-module of E[p*°] is of the form E[p"] for some
n > 0. On the other hand, if p is nilpotent in A, then ker(f,) is the kernel of
the homomorphism f, : E[p>] — E'[p>°] of Lubin-Tate Ox,-modules and so
the claim follows from (1.2.18). O

2.3. Complex and p-adic bases

In this section we give CM analogues of the classification of elliptic curves
over complex schemes in terms of lattices, and of the Serre-Tate theorem. We
use this to show there exists a CM elliptic curve E — Spec(Ogsep) (2.3.3),



40 CHAPTER 2. ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

that deformations of CM elliptic curves over p-adic bases always exist and are
unique (2.3.6).

2.3.1. Let us first consider complex bases. We fix a homomorphism Ox — C
so that we may view Spec(C) as a Spec(Ok)-scheme. Let S be a locally
finitely presented Spec(C)-scheme and E/S a CM elliptic curve. Consider the
exponential sequence associated to the analytification E*"/S*" (cf. (2.1.10))

0 — TZ(E/S) — @Ean/san — Ean — 0
The strictness of the Ok -action on E implies that the homomorphism
@Ean/san — Ean

is a homomorphism of Ok,,-modules. This makes the rank two Zgan-local sys-
tem Tz(E/S) a rank one Ok-local system, which we shall denote by To, (E/S),
and the homomorphism

TOK (E/S) ®07KSM ﬁSan — @Ean/San

is now an isomorphism. As the automorphism sheaf of any rank one Og-local
system over S or S*" is just the constant sheaf associated to the finite group
Oy (from which one sees that every Ok-local system over S or S*" is just a
sum of finite étale S-schemes, or finite covering spaces of S*") by GAGA the
functor sending a rank one Og-local system on S to the corresponding rank
one Oxk-local system on S*" is an equivalence. Therefore:

2.3.2 Proposition. — The functor
E/S — To.(E/S)

is an equivalence between the category of CM elliptic curves E/S and the rank
one Ox-local systems over S.

Proof. — This follows from (2.1.11) and the remarks above. O
2.3.83 Corollary. — There exists a CM elliptic curve E over Spec(Oxsep).

Proof. — By (2.3.2) we see that there exists a CM elliptic curve E/Spec(C).
Writing Spec(C) = limy Spec(A,) as a filtered inverse limit of finite type
affine Spec(K)-schemes by passage to the limit we find a CM elliptic curve
E,/Spec(Ay) for some A\. As Spec(A}) is of finite type over Spec(K) it admits
a closed point Spec(L) — Spec(A ) with L/K finite and we find a CM elliptic
curve Ex Xgpec(a,) Spec(L) over Spec(L).

We now show (essentially following the arguments of [31] only for the sake
of completeness) that for any CM elliptic curve E — Spec(L) over a finite
extension L/K there is a finite extension L'/L such that E xXgyec(r) Spec(L)
has good reduction everywhere. As E has bad reduction at only finitely many
primes, it is enough to show that for each prime p of L there is a finite extension
L'/L such that E Xgpec(r) Spec(L’) admits good reduction at all primes of L/
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over p, as then E will obtain good reduction over the compositum of these
finitely many fields.

So fix a prime p lying over the rational prime p and let ¢ # p be another
rational prime. Let p, : G(L*?/L)* = G(L**/L) — (O ®z Z;)* be the
character defining the Ox ®z Zg-linear action of G(L*P /L) on

E[¢>](Spec(L*P)) — Ok @z Q¢/Z.

First we claim that for each place v of L lying over p the restriction of p,
to the inertia group I, C G(L*P /L) at v has finite image and that this image
is independent of v. As the target of p; is commutative and as the image of
I, (L*°P/L) in G(L*P /L) = G(L#P/L) is the inertia subgroup I, C G(L*?/L) at
p, which is independent of v, it is enough to show that p,(I,) is finite. But it
is well known that I, admits an open subgroup of finite index which is pro-p
and that (Ox ®z Z)* admits an open subgroup of finite index which is pro-£.
Therefore, as py is continuous and ¢ # p the image of the inertia group py(Ip)
must be finite. It now follows that there is an integer n > 0 with the property
that
pe(Ly) = (Ok ®z Zy)* — (Ok ®z Z/0™)*

is injective. Taking L' = L(E[¢"]), the action of the inertia group I, (L /L’) C
G(L3*P /1) at any place v lying over p on E'[¢*°](Spec(L*P)) = E'[¢>°](Spec(LP))
is trivial and we now apply (2.1.16) to deduce that E’/Spec(L’) has good re-
duction at all places of L/ lying over p. O

2.3.4. Now let us consider p-adic bases. Fix a prime ideal p of Ok and let
So — S be a nilpotent thickening of p-adic sheaves and denote by Dy(S,So)
the category whose objects are triples (Eo/So, F/S, p) where

(i) E/Sp is a CM elliptic curve,

(i) F/S is a Lubin-Tate Ok,-module, and

(ili) p: F xgSo — E[p™] is an isomorphism of Lubin-Tate Og,-modules,
and whose morphisms (Eo/So,F/S, p) — (E(/So,F'/S, p") are given by pairs
(90, gp) where go : Eg — E{ is a homomorphism of CM elliptic curves, g, : F —
F’ is a homomorphism of Lubin-Tate Og,-modules such that p’o (g, xsSo) =
(9olg[pe)) © p. There is an obvious functor

CM(S) — Dp(SQ, S) : E/S — (E Xg SO>E[pOO]aidE[p°°]><SSO)-

The following is the theorem of Serre-Tate (2.1.13) adapted for CM elliptic
curves.

2.3.5 Proposition. — The functor CM(S) — Dy(So,S) is an equivalence of
categories.

Proof. — Let p be the rational prime lying under p. We will show that to
each object (Eo/So,F/S, p) of Dy(So,S) (resp. morphism) one can functori-
ally define a element of D,(Sp,S) (resp. morphism) (cf. (2.1.12)). If p = p
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then this is clear as Eg[p>™] = E[p*>]. On the other hand if p # p then
Eo[p>] = Eo[p>] xg, Eo[p™] and Eo[p™] is étale over Sy so that there is a
unique deformation of Eg[p™] along Sy — S and the product over S of this
deformation with F will give the desired deformation of Eg[p>]. Regarding
morphisms (go, gp) the restriction go|ge) lifts uniquely and the product of
this with g, defines the map on morphisms.

In both cases this defines a functor Dy(Sp,S) — D,(So,S) and by the clas-
sical Serre-Tate theorem a functor Dy(Sp,S) — EI(S). By functoriality, if
E/S is the image of (Eo/So, F'/S, p) then E/S admits the structure of an Ok-
module (deforming the corresponding structure on Ey/Sp). Moreover, the
action of Ok on the Lie algebra of E/S is strict as we have identifications of

Ok q-modules

S
Liepys = Lieppey/s = Licpppecy/s = Licp/s

and the action of Okg on F is strict. In particular, the functor Dy (So,S) —

EI(S) factors as

Dy (So,S) = CM(S)

and it is easily seen to be quasi-inverse to CM(S) — Dy(So, S). O

2.3.6 Corollary. — If Sg — S is a nilpotent immersion of p-adic sheaves
the functor

CM(S) — CM(S()) : E/S — E Xg So/So

s an equivalence of categories.
Proof. — This follows from (2.3.5) combined with (1.2.17). O

2.3.7 Corollary. — Let S be a p-adic affine scheme and let E/S be a CM
elliptic curve. Then there exists a affine scheme S, flat_over Spec(OK) a
morphism S — S and a CM elliptic curve E/S such that E XgS — E.

Proof. — By passage to the limit we may assume that S = Spec(A) with
A a finite type Og-algebra. We then choose a surjection A’ — A where
A’ is a flat Ok-algebra. Letting I be the kernel of A’ — A we write S =
Spec(lim, A’ /") = Spec(A’), S, = Spec(A’/I") and S4 = colim,, Spec(A’/T™).
We will show that there exists a CM elliptic curve E/g with E Xg S = E
which, as S = Spec(A) is flat over Spec(Ok), will prove the claim.

For each n > 0 there is a unique En / S, equipped with an 1som0rphlsm
E,. xg, S — E by (2.3.6). Therefore there is a unique CM elliptic curve Eoo
over the ind-scheme S, = colim,, S,, with Ex X3 S = E. By (2.1.8) there is
a unique elliptic curve E over S = Spec(K’ ) with E Xg S = E and moreover it
admits an action of %S compatible with that on En over §n which (taking n

large) shows that the action is strict so that E/SV is a CM elliptic curve. [
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2.4. Isogenies and the action of €%, on .Zcm

In this section we continue the study of the action of €. Z o, on .#cn. We
show that all pairs of CM elliptic curves over a fixed base are locally isogenous
(2.4.1) and from this deduce that the action of .%o, on .Zcy makes it a
torsor (2.4.4).

2.4.1 Lemma. — Let E,E'/S be a pair of CM elliptic curves. Then the
family
(IsomS (E,E' @0, a™ ') — S)actdo,

s a finite étale cover of S.

Proof. — The claim is local so we may assume that S is an affine scheme and
by passage to the limit that S is finitely presented over Spec(Ok). For every
pair of CM elliptic curves E, E'/S the inclusion

IsomS (E,E) — Isomg(E, E)

is easily seen to be a closed immersion and so it follows from (2.1.7) that
IsomS (E,E’) — S is finite and unramified. Therefore, for each integral ideal
a € Ido, the sheaf Is.omS (E,E ®0, a~!) is finite and unramified over S. Tt
follows from (2.3.6) that the maximal open sub-scheme of IsornS (E,E' Qo
a~!) which is étale over S contains all of the special fibres and is therefore equal
to all of IsomS (E,E'®0, a~1). As the morphisms (IsomS (BE,E' ®o, a™!) —
S) a€ldo,, are finite étale this family forms a cover of S if and only if it is a cover
after base change to each generic point of S. So we way assume that S is either
flat over Spec(Ox) (if a generic point has characteristic 0) or that S is p-adic
for some prime p (if a generic point has characteristic p). Let us reduce the
second case to the first and assume that S is p-adic.

Applying (2.3.7) to E and E/, then taking the product of the flat Spec(Ox)-
schemes over which E and E’ can be extended, we find a flat Spec(OK) scheme
S a morphism S — S and a pair of CM elliptic curves E and E’ over S whose
pull-backs to S are isomorphic to E and E’. We now see that the claim we
wish to prove is true for E, E'/S if it is true for E, E' / S. As the generic points
of S are all of characteristic 0, we have reduced the second case to the first
and we may assume that S = Spec(F) where F is a field of characteristic 0.

By passage to the limit we may assume that F has finite transcendence
degree over K, that there is a morphism F — C and by base change that
F = C. The claim now follows from (2.3.2), the fact that all Ok-local systems
over Spec(C) are constant, and the fact that if L and L’ are two rank one
Ok-modules there always exists some a C Ok and an isomorphism L/ —
L ®o, a~ L. O

2.4.2 Proposition — For each pair E,E'/S of CM elliptic curves over S
the sheaf HomS (E,E') is a rank one Ox-local system and the evaluation
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homomorphism
E ©0, Hom{¥ (E,E') — E’

is an isomorphism.
Proof. — The claim is local and by (2.4.1) the set of S-sheaves
(Isomg* (B, B @0, a™') = S)acldo,,

is a finite étale cover, so replacing S with any one of them we may assume
that E' = E ®0, a~! for some integral ideal a. Composing the evaluation
homomorphism with idg ®o, %, where ¢ : ggl = HoimgK (E,E ®0, a™!) is
the isomorphism of (2.2.6), the resulting map

E @0y 0 — E ©o, Hom{X(E,E @0, a ') = E®o, a!
is an isomorphism (in particular it is the identity) and so the second map is
an isomorphism and we are done. O

2.4.3 Corollary. — Let E,E'/S be a pair of CM elliptic curves. Then E and
E' are isomorphic if and only if they are isogenous and locally isomorphic.

Proof. — The only if direction is clear. Conversely, let f : E — E' be an
isogeny and assume that E and E’ are locally isomorphic. As the cover
HacokS@ = S in (2.2.15) is by open and closed sub-sheaves, E and E’ are
isomorphic over S if and only if they are after base change to each S(.
Therefore we may assume that ker(f) = E[a] = ker(iq), so that f factors
as E - E®o, a™! — E. Now as E and E' — E ®q, a !
isomorphic it follows that Oky and a~!g are locally isomorphic. Any such
and isomorphism is locally constant from which it follows that there exists an
isomorphism a~! — Ok and we get

are locally

E S E®oca ' ——E

2.4.4 Theorem. — The functor
AMcom X %XOK — MMM X Ao (E,g) — (E,E@oK .iﬂ)

is an equivalence of stacks and Mo is locally (over Spec(Oxk)) equivalent to
C L0y -

Proof. — The functor in question is essentially surjective as, given any pair
(E/S,E'/S) € Mcn(S) x AMcm(S), by (2.4.2) we have

(E/S,E'/S) — (E/S,E ®0, Homg(E,E')/S).
Full faithfulness is the bijectivity of the map
Isom$¥ (B, E') xIsomg® (£, .Z") — IsomG® (E, E') xIsom X (E®o .2, E'®0,.L").
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If Isom(S)K (E,E") = 0 this is clear. If IsomgK (E,E") # 0 we may assume that
E = E’ and instead show that

Is.omgK (&£, 2L — IsomgK (E®ox Z,E @0, £')

is bijective but this follows from (2.2.6).
For the second statement, if E/Spec(O}") is any CM elliptic curve (2.3.3)
the functor

(K.ZOK X SpeC(OKsep) — %CM X SpeC(OKsep)

sending a rank one Og-local system £ over a Spec(Oy%")-sheaf p : S —
Spec(Okser) to p*(E) ®oy £ is the desired local equivalence. O

2.4.5 Remark. — One might ask whether, as in the analogous situation of
Lubin-Tate O-modules (1.2.16), there exists a CM elliptic curve over & /Spec(Ok)
inducing a trivialisation of the ¢.Zo.-torsor .#Zcn, i.e. an equivalence of
stacks:

%XQKL/{CM:X/SHES(@()KX/S

We shall show later (see (4.2.5)) that in general this is not the case (and for
non-trivial reasons).

2.4.6 Corollary. — Let E and E' be a pair of CM elliptic curves over S and
assume that a is invertible on S. Then the homomorphism

Homg™ (E, ') — Homg™ (E[a], E'[a])
is an epimorphism.
Proof. — We may work locally on S and so assume that E' — E ®0, b™1.
We may find a k& € K* such that b(k) is prime to a and using the isomorphism
k:b — b(k) we may assume b is prime to a. In this case, the restriction of i,

to the a-torsion defines an isomorphism E[a] — E[a] ®o, b~! which, as E|a]
and E[a] ®0, b~! are locally isomorphic to Oxk/ Ay induces an isomorphism

Ox/a, — Homg(E[d], E[a] ®oy b Y ar—a-ip
and it follows that
Ok —1 Ok —1
Homg ™ (E,E ®oy b™") — Homg™ (E[a], E[a] ®0, b7)

is an epimorphism as the image contains . ]
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2.5. The global reciprocity map and CM elliptic curves

We now consider CM elliptic curves over Spec(F) where F is a field of
arbitrary characteristic. First, we define a homomorphism [—]r from the Ga-
lois group G(F*P/F) into a certain class group (which depends only on the
characteristic of the field F') (2.5.1). We then prove a relation between this
homomorphism [~]r and the character pg/r defining the action of G(F*P/F)
on the torsion of a CM elliptic curve E/Spec(F) (2.5.4). Moreover, we show
the character pp/p determines E/Spec(F) upto isogeny (2.5.7) and we use the
homomorphism [—|p to classify exactly which characters p of G(FP/F) are
of the form pg/p for some CM elliptic curve E/Spec(F) (2.5.8). In (2.5.9) we
compute the homomorphisms [—]p when F = K, F = K, and F = F, for p a
prime. In particular, for F = K the homomorphism [—|k takes the form

[~k : G(K*P/K) — CLog 00
and we show that for o € G(K*®P /K) we have

Ok ([o]k) = ok (2.5.0.1)

where 0k : CLoy 00 = G(K*°/K) is reciprocity map (1.4.7.2). This fact is, at
least in spirit, equivalent to the main theorem of complex multiplication (see
Theorem 5.4 of [33]). The method we use to derive this fact is quite similar
to (and in fact reliant on) the method used to prove (1.2.20) for Lubin-Tate
O-modules in Chapter 1. Finally, we use these results to derive a sharpening
of the criterion of good reduction adapted to CM elliptic curves (2.5.12).

The results of this section are, at least when F is a finite extension of K,
probably more or less known when translated into the language of algebraic
Hecke characters though the proofs we give are, to the best of the author’s
knowledge, original. We would like to emphasise that the rather abstract
approach taken — which eschews Hecke characters — works for all fields F
simultaneously and allows for more conceptual proofs.

2.5.1. Let F be a field over Ok with separable closure F*¢P_ let S = Spec(F*°P)
and let f € Ido, be invertible on Spec(F). By (2.3.3) there exists a CM elliptic
curve E/S. Moreover, if E'/S is another CM elliptic curve then there exists
a rank one projective Og-module L and an isomorphism f : E ®o, L — E'.
Of course, we could take L = Homg, (E,E’) and f the evaluation map, but
for what follows it will be more useful to work with arbitrary modules L and
isomorphisms f : E ®o, L — E'.

In particular, for each o € G(F*P/F) there is a rank one projective Ok-
module L, and an isomorphism

fo i E®ox Lo — o*(E).
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This isomorphism, restricted to the S = Spec(F*P)-points of the f-torsion, is
then given by

Elf|(0)2A0

E[fl(S) ®ok Lo E[f](01(S)) = o™ (E)[fI(S)

for a unique level-f structure A\, : L, — Oxk/f on L,. It is clear from this
construction that the class

lo]pj = (Lo, As) € CLgL

is independent of the choice of L, and the isomorphism f, : E ®o, Ly —
0*(E). Moreover, as every other CM elliptic curve E’/S is of the form E®o, a
for some ideal a, having chosen L, and an isomorphism f, : E ®o, Ly —
o*(E), the map f, ®o, a defines an isomorphism

fo® a
(E ®0x a) ®ok Lo = E®oy Le ®o a —Oi( 0" (E) ®oy a = 0" (E ®0o, a)

which induces on the S-valued points of the f-torsion

(E®0Kﬂ(a)®>\o

(E ®@ok @)[f](S) ©@ok Lo (E®ok a)[fl(1(S)).

Therefore the class [o]p is also independent of the choice of E/S.
If F — F is a field extension and

res : G(F®*P/F") — G(F*P/F)
denotes the restriction map then it follows easy from the definitions that
[—lp 5 = [~]p, o res. (2.5.1.1)

This relation implies that once we known [ for F = K, and F = F,, for each
prime ideal p, we essentially know [—|r for any field F. The computation of
the map [—]r for these values of F will be given in (2.5.9).

If 7 € G(F*P/F) then the composition

o*(f7)

fo®0yidr,
25 0%(B) ®oy Ly —5 o (7*(E))

E ®ox Lo ®oy L+
induces on the S-points of the f-torsion the map
(E[f}(c™" oT00) @0, Ar)o (E[f](0) ®0k Ao @0y idL, ) = E[f](T00) R0 As 0y Ar
so that
[o7]p s = (Lr ®0k Lo, Ar ®0i Ao) = (Lir, Ar) (Lo, A7) = [o]p[7]E 5.

In other words, [—]p;: G(F*P/F) — CLg)K is a homomorphism.
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2.5.2. The homomorphism of (1.4.4.1)
[ : (A ®o, K)* — CLY).
restricted to AJ factors through the quotient Ag — (Ox/f)* and we denote
the resulting map by the same symbol
[y + (Ox/P* = CLE,.
Note that ker([—];) = im(Oy — (O /f)*) C (Ok/f)*.

2.5.3. Now let E/F be a CM elliptic curve and denote by

pe/r: GF*P/F) — (Ok /f)*
the character defining the action of G(F*?/F) on the rank one Ok /f-module
E[f](S) = E[f](Spec(F*P)), i.e.
Effl(e) = pryr (o) : EIF)(S) — EITI(S).

We also note for future reference that as (Ok/f)* = Auto, (E[f](S)) is abelian
for each f it follows that the extension F(EIf])/F generated by the f-torsion
is an abelian extension of F. Moreover (as is obvious) the character pgp; is
continuous, as it vanishes on the open subgroup of G(F**P/F) fixing F(E[f]).

2.5.4 Proposition. — (i) The homomorphism [—]p; is continuous and
(ii) if E/F is a CM elliptic curve the diagram

—1
pE/Ff

G(F*P/F) — (Ox/f)"

-]

cLy

K
commutes.
Proof. — (i) We shall reduce this claim to the second. By passage to the limit

(applied to any CM elliptic curve over Spec(F*P)) we may find a CM elliptic
curve E/Spec(F’) for some finite extension F//F. If the diagram

—1

a(F=r/F) " (Ox /)¢
J l[_]f (2.5.4.1)
[=r,
G(F*?/F) — = CLY)
commutes then, as the composition along the top and right is continuous,
it follows that [—]ps|qrser/pr) is continuous. But G(F*P/F') C G(F*P/F)

is open and of finite index and CL(Of)K is discrete so it follows that [—]p; is
continuous.
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As [~]rj = [~]rfla@ser/ry (2.5.1.1), the commutativity of (2.5.4.1) is equiv-
alent to the commutativity of the diagram

,PJWJ
G(F*P/F) —— (Ox/f)*

[~
mlf

6]
CLo

and so we may assume that F = F’ and instead prove (ii).
(ii) Write Epser = E Xgpec(r) Spec(F*P) and let
do— : Epser — O'*(EFsep)

be the descent isomorphism i.e. (the isomorphism coming from the fact that
E = E Xgpee(r) Spec(F*P) descends to Spec(F)). Then d, induces on the
S-points of the f-torsion the map

Bl(8) S B (0y()) = o (B])(S)

and therefore

pe/p ()" —
(ol = (Ok. Ok "5 Ok/f) = [pjms(0) ") € CLY),
O
2.5.5 Proposition. — Let E/F be a CM elliptic curve.
(i) Let £ € € Loy (Spec(F)) and
Pz G(G*P/F) = Auto, (Z(Spec(F*P))) = Og
be the associated character. Then PE@o L/F = PE/FIPLF
(ii)) If 7 : F — F is any Ox-linear automorphism then
pre)p(0) = pryr (T 0T)
for each o € G(F*P /F), where T denotes any extension of T to F5P.
Proof. — These are immediate from the definition of pg/p; as the character
defining the action of G(F*?/F) on E[f](S) = E[f](Spec(F*°P)). O

2.5.6. For what follows we let § € Idp, vary over the integral ideals of Ok
which are invertible on Spec(F). We now take the limit over f to define the
homomorphisms [~|r, pg/p and [~] by

[~ += lim[—Jes : G /F) — lim cLy)

K’
pr/r = lim P - G(F*P/F) — ligﬂ(OK/f)X,

and

K"

(=] = lim[~; : lim(Ox /)" — lim cLy)
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We find immediately from (ii) of (2.5.4) that
e = [ (25.6.1)

2.5.7 Proposition. — Let E,E'/F be a pair of CM elliptic curves. The
following are equivalent:

(i) PE/F = PE'/F;
(ii) the character p defining the action of G(F*P/F) on

Homg¥ | 1 (E, E) (Spec(F*P))

ec
is trivial,
(iii) the étale Spec(F)-scheme HomS&C(F) (E,E') is constant,
(iv) E and E' are isogenous.

Proof. — Let p : G(F**P/F) — O be the character defining the action of
G(F*?/F) on the Spec(F*P)-valued points of the rank one Ogk-local system
(6]
Homg " ) (E,E).
(i) implies (ii): The isomorphism

E ®OK MSPGC(F)OK (E, E/) ; E/

combined with (i) of (2.5.5) gives pg//p = p - pg/p so that p is trivial if and
only if pg/r = pr//F-

(ii) implies (iii): This is clear from the definition of p.

(iii) implies (iv): If Homg;‘ec(F) (E,E’) is constant any non-zero Spec(F)-
section defines an isogeny E — E'.

(iv) implies (i): If f : E — E is an isogeny then ker(f) = E[a] = ker(iq) for
some integral ideal a by (2.2.15). Therefore E ®o, a~! — E’' and by (i) of
(2.5.5) we then get

PE//F = PE®o,a~/F = PE/F-

2.5.8 Proposition. — Let

p= li?l p; : G(F*P/F) — li%rn(OK/f)><
be a continuous homomorphism. Then there exists a CM elliptic curve E/F
with pgr = p if and only if the diagram

o1

G(F*? /F) —— lim(Ok/f)*

i
\ J{H
—Ir

lim CLY)

commutes.
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Proof. — The only if claim is (2.5.6.1). Conversely, by passage to the limit
there exists a CM elliptic curve E'/Spec(F’) where F C F’ is a finite extension.
As the compositions of pg//p and p|g(pser /57y With

(] Tim(Oxc /)" — Tim CLY)

coincide and ker([—]) = O, the difference defines a character
pites - Platpes )+ G /) = O = kex([-]) € lm(Ox/f)*. (2581

Replacing E’ by the tensor product of E' with any rank one Ogk-local system
with associated character (2.5.8.1) we may assume that pg /g = plg(mser /5v)-

Let v € G(F*P/F’) and o € G(F*P/F) with 7| = 0. We have by (ii) of
(2.5.5)

Po ey (V) = prr e (0~ wo) = plo™ ve) = p(v) = pgr e (V).
Therefore p,- (/) /7 = prr/pr and by (ii) of (2.5.7) E' and o*(E’) are isogenous.
For all § invertible on Spec(F) we have

Ble s = los(o) 1 = (Ox, 0k "D Ok /).

This implies that, writing Efee, = E Xgpec(r) Spec(F*P), the CM elliptic curves
Efsep and ¢* (Epsep ) are isomorphic. As g|p = o this implies that E' and o*(E’)
are locally isomorphic. But E and E’ are also isogenous and so by (2.4.3) they
are isomorphic.

Now fix an integral ideal § which separates units and is also invertible on
Spec(F). As [o]p; = [p;(6)!], and as § separates units, there is a unique
isomorphism

rz : B = o*(E)
which on S-valued points of the f-torsion is the map

-1 R/ 5
)LEE)

E[f)(s) " E'[fl(00(S)) = o*(B)[f)(S) (2.5.8.2)

where we view ¢ as a Spec(F’)-morphism
g:o(S)—S.

If 7 € G(F//F) and 7 € G(F*P/F) satisfies T|pr = 7 then the defining
property (2.5.8.2) of the isomorphism

57t B = (100)"(E)
is also satisfied by
o*(rz)org : B =5 (10 0)*(E)
and so we get
r57 = 0" (rz) ors. (2.5.8.3)
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Moreover, if ¢ € G(F*P /F') C G(F®*P/F) then rs induces on the S-points of
the f-torsion the map

(@) B 1)

E'Tf(S) E[f](S).

However, by definition
E/[ﬂ (o) = pE’/F’,f(a)

so that rz induces on the S-valued points of the f-torsion the map

pr w1 (@) TE(G) = prr e (0) 7 prr e §(6) = idggs)-

The uniqueness of r; now shows that rz = idg.

This combined with the relation (2.5.8.3) shows that for all o € G(F*°P /F)
the isomorphism r3; = 7, depends only on ¢ = &|r, has Tidp = idgr and
satisfies

Tor =0 (1) 0Tg.

In other words, we have Galois descent data on E' — Spec(F’) relative to
Spec(F’) — Spec(F) and by construction the descended CM elliptic curve

E/Spec(F) has pg/p = p. O
2.5.9 Proposition. — (i) When F = F,, in the notation of (1.4.7), we
have for alln € Z:
Fr¥" g, = lim [p]7" € lim CLJ .
e, = o, P € i, O

(ii) When F =K,, we have for all 0 € G(K™/K):

ok = Ok ([o]x,)

where the restriction |k is along any K-linear embedding K — Kf,ep.

(iii) When F = K we have for all o € G(K*P /K):
0’|Koo = QK([U]K)

Proof. — (i) As G(F,P/F,) is topologically generated by Fr™*, by continuity
it is enough to show that [FrP]p, ; = [p]f_l for all f prime to p. Write S =
Spec(Fy "), let E/S be a CM elliptic curve and consider the isomorphism

vyt E®o, pt > FrNPH(E)
of (2.2.13). By the definition of v, the composition
E2REgo,p ! =5 BN (B)
is equal to the Np-power relative Frobenius of E which induces the map

I‘N
)

E[f)(S) E[f)(Fry*(S))
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on the S-points of the f-torsion. Therefore, the map 14, induces on the S-valued
points of the f-torsion the map

_1 EfI(B)ef
Bf1S) @o ™ T EIET(S))
where f is level-f structure defined by (1.4.3.1). Hence
[F¥ g, ¢ = b5 = [p];

(if) Write T = Spec(Ogser), Ty = Spec(Fy?) C T, let &/T be a CM elliptic
curve, write &, = & X1 Ty. By continuity it is enough to prove the claim for
o € W(K*P/K) = vi'(Z) and by multiplicativity for o with vk(c) =n > 0.
Let o be such an element.

As T = Spec(OKiep) admits no non-constant finite étale covers, the sheaf

IsomfgK (& @0y p 1, 0%(&))

is finite and constant. Moreover, as T is connected and o acts by Fr™" on
the residue field F® of Ogser, there exists a unique isomorphism

Vo : & Qo P " — (&)
lifting the isomorphism
Uyt & @ox P — FrNPH (&)

of (2.6.5). We now compute the action of v, on the T-points of the f-torsion
of &/T.

First let f be prime to p. As &[f] is finite étale, we have &[f](T) = &[f](Ty)
compatibly with the actions of ¢ and Fr™". It now follows from (i) that the
map induced by v, on the S-points of the f-torsion is

EI(T) @0 p" “ 1D £[f](00(T)) = 0 (£)[f)(T)

where f is level-f structure defined by (1.4.7).
Now let f = p” for some r > 0. Setting &, := &[p"] and

Ty = Spf(OK;ep) = co}bim Spec(OK'sJep/p"H),
we obtain the commutative diagram
6(T) @o p" ——— 0*(&:)(T)
| | 2503
6(Too) @0y p7" —— 07(6:)(To).

whose columns are isomorphisms as &, is finite locally free over S. Now con-
sider F = &[p>™] x1 T and set F, = F[p"]. Then F is a Lubin-Tate Ox,-
module over the p-adic sheaf T, by (2.2.11) and the map on the bottom row
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of (2.5.9.1) is equal to
Vo : Fr(Too) ®oy, P~ — 0" (Fy)(Too)

where v, is the unique map in (i) of (1.2.20). It follows from (iii) of (1.2.20)
that this map is given by

Fr(0) @0y, XK, (0) : Fr(Too) @0y, p" — Fp"](01(To)) = 0" (F[p"])(Tox)

where 0'|Kgb = (xk,(0), Kgb/Kp). Therefore the map in the top row of (2.5.9.1)

is given by &.(0) ®oy Xk, (7).
Writing S = Spec(K,™) and considering the generic fibre E := & x1 S, and
arbitrary f, the computations above show that the map induced by v,

E[f](S) @0, p™" — E[f](01(8)) = o™ (E[p"])(S)

is given by E(c) ® xk, (o) where we view xk, (o) as

_p XKy (0)
p KL} AOK—)OK/f

Therefore

ol = (70" 7 Ao Ok /P) = e, (0]

Taking limits we find [0]k, = [xk,(c)] and by (1.4.8.2) we get
ok = Ok ([o]x,)

where the restriction is along any K-embedding K> — K.

(iii) We see from (ii) that for all primes p and all embeddings K5 — K™
and all o € G(Ky™/K), writing 7 = o|kser

Tlkee = (ofkser )|k = ol = Ox([o]k,) = Ox([o|keer]) = O ([T]K)-
However, the sub-group of G(K*P /K) generated by elements of the form 7 =
o|gsep (for varying primes p and embeddings K5 — K'Sjep) is dense. It follows,
by continuity and multiplicativity, that for all 7 € G(K*P/K) we have
T|Koo = QK([T]K)

O]

2.5.10. The homomorphisms [—]r can be (trivially) reinterpreted idelically
using the isomorphism (1.4.7.2)

—1
CLoy o 5 (A @0, K)*/K*

and we do so only to make clear the relationship with the map (1.2.21.1). Let
us do so here for hx and so define yx = [~k o hy'.
(i) For all ¢ € G(K*P/K) we have ok~ = (xk(0),K*/K) (cf. (iv) of
(1.2.20)).
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(ii) For each prime p, each 0 € W(K;?/K,) € G(K,"/K) and each K-linear
K5P — K we have

Xk (olkser) = xk, (0) € K C (Aok ®ok K)*/K*

where Xk, is the homomorphism of (1.2.21.1).

(iii) If K C L € K*P is a finite extension of K and p : G(K*P/L) — A§_ is
a continuous character then there exists a CM elliptic curve E/Spec(L)
with pg/1, = p if and only if the following diagram commutes

pg/lL
GK*P /L) —— 5 A,

le; \L
(AOK @ok K)X/KX
where the right vertical arrow is the obvious map.

2.5.11 Remark. — Let L/K be a finite Galois extension and let E/L be a
CM elliptic curve. We now give a simple description of the algebraic Hecke
character of E/L, which is a certain continuous homomorphism

wE/L I — K*

satisfying v/ |« = N,k (for the definition of ¢y, see §7 of [31]).
View the homomorphism

pe/L @ GIK*P/L) — A(X)K
as a homomorphism
pjt : GL /L) = G(L=P/L)™ — A}

and for s € Iy, write sgy for the element of (Ao, ®o, L) obtained by forgetting
the components of s at the places of L lying over co. Then we claim that
algebraic Hecke character ¢ 1, associated to E /L is given by

YpsL L — (Aog ®o K)* s 0 pgyn (s, L2 /L)) - Ny jc(sen). (2.5.11.1)

We will not prove this but let us show that the map g1, defined by (2.5.11.1)
satisfies wE/L’LX = NL/K and ¢E/L(IL) c K* C (AOK Kok K)X
For a € L™ C I, we have

pry1(a) = pry((a” !, L /L)) - Ny g (agn) = 1 Ny, jx(a)
so that pgp |« = Np/x. Now computing the composition

I "4 (A @0y K)* & CLoy oo
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we find:

loe/L((s™ L /1)) - Npjk (san)] = [op/((s™ L /L))] - [Nk (s6in)]

[(s7, L*/L)Jr, - [Ny (fin)]

= [(Npx(s™), K*®/K)]k - [NL/k(56n)]
(N (s )» K™ /K)Jx¢ - [N/ (5m)]

= [Ny (sg)lk - [NL/k(S6n)]
= 1.

Therefore, pg1,(I) C ker([~] : (A ®ok K)* — CLog 00) = K*.

2.5.12 Proposition. — Let L/K be a finite Galois extension, E/L a CM
elliptic curve, v be a non-archimedian place of K°P lying over the primes 3
of O, and p of Ok, and let 1, C G(K*P/L) be the inertia group at v. Then
pr/L(ly) C O - OIX< C A5, and E/L has good reduction at B if and only if

pE/LLw) C OXP

Proof. — The homomorphisms pg;, and [—]r, both factor through G(L*"/L)
and we will denote the resulting homomorphisms by the same symbol. The im-
age [I,], of the inertia group at v is equal to [(Oﬁn’ L2 /1)];, where (—, L2P/L) :
CL — G(L*/L) is the global reciprocity map (1.3.3) and where Oﬁp C
I/L* = Cp,

As [-]L = [~]k|c(ks=r 1), the compatibility of the reciprocity maps with the
norm (1.3.4) shows that

(O, L** /D)l = [(Nex (O, K™ /K)Jk € [(O5,, K*/K) ]k
By (iii) of (2.5.9) we have
(0%, K /K)]k = [(0%,, K*/K)lk = [0%,] € CLog ..
This combined with the relation [pg/lL] = [—]r, and the fact that
ker([—] : ASK — CLoy,00) = O C ASK

shows that ppp,(I,) C O - Oﬁp.

Now let ¢ be a rational prime such that ¢ - Ok is prime to p. Then the
action of I, on E[¢*°](Spec(L*)) factors through the image of pg 1, (I,) under
the projection A(X)K — (Ok ®z Zy)™ and is trivial if and only if this image is
trivial. As pg,(I,) C O - Oﬁ the image of this homomorphism is equal to
p(I,) N O C (Ok ®z Zg)* which is trivial if and only if pgr,(I,) C O . We
may now apply (2.1.16) to see that E/L has good reduction at v if and only if

pr/1(ly) C Og, . H
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2.5.13 Proposition. — Let L be a finite Galois extension of K and let E/L
a CM elliptic curve. If E[f] is a constant scheme over Spec(L) for some f
which separates units then E/L has good reduction everywhere.

Proof. — If E[f] is constant then the action of G(L*P /L) on E[f](Spec(L*P))
is trivial and therefore pg,, takes values in Aéi C ASK. By (2.5.12), for
each finite place v of L lying over the prime p of Ok, we have pg/,(I,) C
Oy - OK;< C Ag, - Combining these, we have

pe/(lu) C (OF - Ogx) N AgT cog!- o .

As f separates units Oﬁ’f = {1} and so pg,1.(I,) C OIX(p. It now follows from
(2.5.12) that E/L has good reduction at v. O

2.5.14 Example. — Let p be a prime of Ok and let Fy» be the unique
extension of Fy of degree n. As G(F,™ /Fyn) — Z is topologically generated
by the Np™-power Frobenius map, we see from (i) of (2.5.9) to give a continuous

homomorphism
p:GEF,P/Fpn) = lim (Ok/f)™
( ) ):OK
such that [~]g,, = [p~'] is the same as giving a generator p(FrNP"y = 1, €

Ok of the ideal p™. The corresponding isogeny class of CM elliptic curves
E/Spec(Fyn) are those with the property that the endomorphism

T, E— E
is equal to the Np™-power Frobenius.

2.5.15 Example. — Let § be an ideal that separates units and recall the
isomorphism (1.4.8.1):

AL = GE™/K(f).
Now define
Pt GKEP/K(F) = AG,
to be the composition

G(K*P/K(f)) = GK®/K()) > A5l — A% .

Then [p~*(—)] = [~]k() and p corresponds to an isogeny class of CM elliptic
curves E/Spec(K(f)). These curves are distinguished by the fact that their
f-torsion E[f] is constant and their study is the topic of the next section.
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2.6. Moduli and level structures

In this section we define level-f structures for CM elliptic curves (for each

integral ideal §) and we show that the corresponding moduli stack //lé?/[ admits

a natural action of ‘K.Zg)}( under which it becomes a torsor (2.6.6). This

induces an action of CLg)K on the coarse sheaf Mg%\/[ of ///gg/[ and using this

we prove that Mg%\/[ is isomorphic to Spec(Oxgj) [f~!]) compatibly with the

isomorphism
B : CLY 5 G(K()/K)
of (1.4.7.3).
Most of the results contained in this section are probably more or less known,
however they do not seem to have appeared in the literature and so we are
happy to present a detailed account.

2.6.1. Let E/S be a CM elliptic curve and let § be an integral ideal of Ok. A
level-f structure on E/S is an isomorphism of Ok (-modules 3 : E[f] — OL/fs‘
An f-isomorphism (E/S, 8) — (E'/S, 8) between CM elliptic curves with level-
f structures is an isomorphism f : E — E’ such that ' o f lg = B. We write

/[é?d for the moduli stack over Sho, whose fibre over an sheaf S is the category
of CM elliptic curves with level-f structures together with their f-isomorphisms
and if = Ok we identify .oy with 20K, Tf (E/S, 8) is a CM elliptic curve
with level-f structure we shall often just denote it by E/S when the level-f
structure is clear (or at least does not need to be explicitly mentioned). We
list the following (usual) constructions and properties of CM elliptic curves
equipped with level-f structures.

2.6.2 Remark. — (i) If (E, ) and (E/, ') are a pair of CM elliptic curves
equipped with level-f structures then we equip the rank one Ox-local
system HomgK (E,E’) with the level-f structure

Homg™ (E, E') — Homg™ (E[f], E'(f]) - Homg™ (Ok/fy, Ox/fs) = Ok/f

where the central isomorphism is

fraofod L.

(i) If (E, B) and (.Z, ) are a CM elliptic curve and rank one Ok-local system
over S with level-f structures then we equip E ®o, -Z with the level-f
structure 8 ®o, «.

(iii) The sheaf of f-automorphisms &g) (E) of a CM elliptic curve with level-f
structure (E/S, ) is equal to Oﬁ’f. In particular, it is trivial if f separates
units. S

(iv) The sheaf of f-isomorphisms mg) (E, E) between two CM elliptic curves
over S equipped with level-f structures is finite and étale over S and E and

E’ are locally isomorphic if and only if Isomg) (E,E’) is an Oﬁ’fs—torsor.
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(v) Given a CM elliptic curve E/S with level-f structure (E/S, ) € %é?d(S)
the existence of the isomorphism 8 : E[f] — O/ fo implies that E[f] is
étale over S. It follows from (2.2.11) that f is invertible on S and that
morphism S — Spec(Ok) factors through Spec(Ok[f~]). In other words,
the structure map ///m — Spec(Ok) factors through Spec(Ok[f~1]) —
Spec(Ox).

(vi) Let & — Spec(Okser) be a CM elliptic curve (such a curve exists by
(2.3.3)). Then

E[ﬂ X Spec(Oksep) SpeC(OKSep [f_l])

is étale and constant over Spec(Ogses [f~!]) and so admits a level-f struc-
ture. Choosing such a structure one obtains a map Spec(Oxsen [f1]) —
///é?/[ As Spec(Oksen [f71]) — Spec(Ok[f~!]) is a cover, this shows that
the structure map from (the coarse sheaf of) %ggd to Spec(Ok[f1]) is
an epimorphism.

(vii) If a is a fractional ideal prime to § then a has a natural level-f structure,
coming from a — a ®o, Ox/f = Ok/f, and we just write — ®qo, a for
the corresponding auto-equivalence of ///((3?/1

2.6.3. Using (ii) of (2.6.2) we can define a functor
MRy x €LY — MRy (B/S,.2/S) = Eo, L/S
(the level-f structures are understood).

2.6.4 Proposition. — Let E,E' be a pair of CM elliptic curves with level-f
structures over S. Then the evaluation map

~

E ®oy HomS (E,E') — E
s an f-tsomorphism.

Proof. — This is immediate from the definitions. O

2.6.5 Proposition. — For each prime ideal p prime to | and each n > 0
)

there is a unique isomorphism of ///((JM x Spec(Fy) auto-equivalences vpn :
—®0p" > FrNP (=) such that for all CM elliptic curves E over Spec(Fy)-

sheaves S the diagram
o

E®o p! — s (R

commautes.
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Proof. — We need only verify that the isomorphism vy (E/S) : E®o, p™" —
FrNP"*(S) of (2.2.13) is an f-isomorphism. However, the morphisms iy» and
Frg';g induce isomorphisms on the j-torsion which are compatible with the
level-f structures on E, E ®o, p~" and Fr'™?"*(E) so that as Frg’;; = Vyn O lpn
it follows that vy (E/S) is an f-isomorphism. O

2.6.6 Proposition. — The functor
MBy x €LY — My < MYy (B, L) (E,E 00, £)
CM Ok CM CM ’ ) Ok
is an equivalence of stacks and ///C(Jflz/[ 15 locally equivalent to %Xgi{ xSpec(Ok [f~1]).

Proof. — By (2.6.4) this functor is essentially surjective. Moreover, for all S
the morphism

Isomg) (E,E')x SIsom(Sf) (&L, L") — Isom(sf) (E,E')x sIsorng) (E®ox-Z, E'®0,-Z")

is an isomorphism of sheaves over S, as this can be checked on S sections.
Indeed, if Isomg) (E,E’)(S) = 0 then it is clear and if Isom(sf) (E,E")(S) # 0, we
may assume that E = E’ and show instead that the map

Isom(sf) (&L, <) — Isomg) (E®ox Z, E®0y L) :h—idg®@h  (2.6.6.1)

is bijective. The bijectivity of this map follows from (2.2.6) combined with the
fact that an isomorphism h : ¢ — £’ induces an f-isomorphism idg ®oy h :
E ®oy £ — E®oy £ if and only if h is an f-isomorphism. O

2.6.7. We now wish to compute the coarse sheaves Mg%w = C(.///gg/[) of the

stacks ,//C(?/I First let us define an action of

CLY) 71 = CLY). x Spec(Ox[f )

on Mg%\/[ As this group is constant it is enough to define an action of CLg)K

and then, using the isomorphism
Idg)K/1—-’1“in§f)modf = CLg)K a— [as

)

K

()

it is enough to define an action of Idg with the property that Priny | 4 ; acts

trivially. Each ideal a € Idg) , equipped with its standard level-f structure
K
induces an auto-equivalence
— ®og a:j/(()flz/l —>///((Jf12/[
and by the universal property of the coarse sheaf an automorphism [a]; :
Mg%\/[ — Mg%\/[ For a,b € Idg) the natural f-isomorphisms

K’

(— ®og @) ®oy b — — ®0oy ab
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show that [b]; o [a]j = [abl;. We have [a]; = [b]; € CLY) if and only if there
exists an f-isomorphism a — b, which in turn induces an isomorphism auto-

equivalences
— ®0x @ — — ®0y b
and gives [a]; = [b]; : Mg%\/[ — Mg%\/[ so that we have defined our action.

Moreover, by (2.6.5) it follows that for each prime p € Idg)K the pull-back
of the automorphism

Pl s My > M,

along Spec(Fy) — Spec(Ok[f~1]) is equal to the Np-power Frobenius
[p~]; x Spec(Fy) = Fr™P M(Cf%v[ x Spec(Fy) — Mg%\/[ x Spec(Fy) (2.6.7.1)
2.6.8. If (E/S, ) is a CM elliptic curve with level-f structure then we write
CE/Sj * S — Mg%\/[
for the composition
¢ /M

0.,

(when § = Ok we drop the f). It follows from the definition of o4 that

CE®oy a/S,f — Ta O CE/S f- (2.6.8.1)
2.6.9 Corollary. — (i) The action of CLg)K [f71] on M(Cf%v[ makes it a tor-

sor over Spec(Ok[f1]).

(ii) Mg%\/[ is finite and étale over Spec(Ok[f1]).

(iii) The action of G(K*P/K) on Mg%w(Spec(Ksep)) is through the homomor-
phism

0
G(K*P/K) = G(K(f)/K) = CLS) C Autgpee(ors-1(Mchy)

hence
Spec(Ok ) [F']) — M(c?v[

Proof. — (i) To show that the action of CLg)K [f~1] is free it is enough to show

that for each [a]; € CLg?K the automorphism [a]; : M(C?\/I - M(C?\/I fixes a

section S — M(C?v[ if and only if [a]; = [Ok]j. So let [a]; € CLg)K fix a section

S — Mg%v[ By the definition of the coarse sheaf, there exists a cover S’ — S
and a CM elliptic curve E/S" such that the induced map S — S — Mg%\/[
is equal to cg/g ;. This section cg/g ; is also fixed by [a]; which is now the
statement that the two CM elliptic curves with level-f structure E and E®o, a
are locally f-isomorphic over S’. After refining S’, we may assume that E and
E ®o, a are actually f-isomorphic which by (2.6.6) implies the existence of
an f-isomorphism Ok, 5 ag. After refining S’ again such an isomorphism
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is constant and of the form h where h : Ok — a is an f-isomorphism and it
follows that [a]; = [Oxk];.
Similarly, to show that the action of CLg)K [f~!] is transitive, it is enough to

show that for each pair of sections ¢1,¢co : S — Mg%\/[ there is a cover (S; — S);e1

and elements [a;]; € CLg)K such that [a;]joct|s;, = c2ls,. Again by the definition
of the coarse sheaf there exists a cover S’ — S and CM elliptic curves Eq, Eg
over S such that the compositions S’ — Mg%\/[ of ¢c; and ¢y with S’ — S are
equal to cg, /g5 and cg, /g5 By (2.6.6) there exists an Ok-local system (£, a)

with level-f structure and an f-isomorphism
E; = E> Roxk Z.

After base change to a cover (S; — S);er (the corresponding class of .Z may
not be constant which is why our cover may consist of multiple elements)
we may assume that (£, a) = (ag, f,) and it follows from (2.6.8.1) that
CE, /s, = [alj © g, /s, and this proves the claim.

(ii) The fact that Mg%\4 is finite and étale over Spec(Ox[f~!]) follows by

descent, as Mg{v{ is locally (over Spec(Oxk[f~!])) isomorphic to CL((’;)K [f71] by

(i) and CLg)K [f~1] is finite and étale over Spec(Ok[f~1]).

(iii) For each prime p prime to §, the automorphism [p~!]; : Mg{v{ — Mg%vl
lifts the Np-power Frobenius automorphism modulo p (2.6.7.1). For any such
automorphism (of any finite étale Spec(Ok[f!])-scheme) there exists an ele-
ment o € G(K*P/K) such that

MO () = [p~15(Spec(K*P)) : MU, (Spec(K*P)) — MU} (Spec(K*P)).

However, the action of CL(ODK on Mg%\/I(Spec(Ksep)) is transitive by (i), and
CLg)K is generated by elements of the form [p_l]f and so it follows that the
action G(K*P/K) on Mg%\A(Spec(KSQP)) is transitive. Therefore M(Cf%v[ is con-
nected and isomorphic to Spec(Oy,[f~!]) for some finite extension L /K which is
unramified away from f. By construction, the isomorphism G(L/K) — CLg)K

sends the Frobenius element oy, , to [p~!]; and it follows that L — K(f)
(cf. (1.4.7.3)). O

2.6.10 Remark. — We list the following consequences of (2.6.9).

(a) The coarse sheaf Mcy of .#Zcy is isomorphic to Spec(Og) where H is
the Hilbert class field of K. This recovers the fact the j-invariants of CM
elliptic curves defined over extensions of K lie in H C L.

(b) Let E — S be any CM elliptic curve and recall that

CE/S S — MCM

denotes the morphism

C.//[C

SE Aou M.
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Then by definition, if E’ is another CM elliptic curve over S then cg /Sy CE//S
S — Mc are equal if and only if E and E’ are locally isomorphic. Com-
bining this with (2.4.3) and (2.5.8), we find that if S = Spec(F) for F a
field then the map
E/F = (pg/p; ce/r)

defines a bijection between the set of isomorphism classes of CM elliptic
curves over E/Spec(F) with the set of pairs (p, c) where:

(i) p: G(F*P/F) — lim;(Ok /f)* is a homomorphism such that [p~!] =

[—]r, and

(ii) ¢: Spec(L) — Mcw is any map.
If f separates units then //lglz/l — Mg%\/l — Spec(Oxk ) [f]). If E/Spec(K(f))
denotes the generic fibre of the universal CM elliptic curve with level-f
structure the homomorphism

pe/K(j @ GIKF)*P/K(f)) = AS,
is equal to (cf. (1.4.8.1))

GOK() ™ /K()) 5 GER™/K(7) > Ag] "% A%

K






CHAPTER 3

A-STRUCTURES, WITT VECTORS AND
ARITHMETIC JETS

In this chapter we give a brief introduction to, and overview of, the theory
A-structures, Witt vectors and arithmetic jet spaces following the approach
of Borger [4], [5]. It is by nature a technical and notationally heavy theory,
but its many applications make it a worthwhile subject. The two papers
mentioned are both an excellent introduction and general reference and we
encourage to the reader to consult them. We give here really only the minimal
set up necessary for our applications in Chapter 4 and proofs are given only
where they cannot be cited or where it would be perhaps enlightening.

In the final section we prove a small new result which shows that A-structures
on relative abelian schemes are determined by their underlying W-structures.

3.1. Plethories

3.1.1. Fix a pair of rings O and O’. An O-O’-biring ® is an O-algebra together
the structure of an O’-algebra on the set Homgo(®, A) which is functorial in
the O-algebra A. This is structure is determined by certain homomorphisms

(i) coaddition and comultiplication: A, Ay : ® — ® @0 ®

(ii) coadditive and comultiplicative units: €3, ez : ® — O

(iii) O coaction: O' — Endp(®) : s — so
satisfying various identities (cocommutativity of the coaddition and comulti-
plication, coassociativity and so on).

We denote by Biringg o/ the category whose objects are O-O'-birings and
whose morphisms are those O-homomorphisms & — @&’ inducing functorial
homomorphisms of O’-algebras Homo (®’, A) — Homo (P, A). Of course, this
is equivalent to the homomorphism ® — @ being ‘compatible’ with the maps
A$, A;ﬁ, and so on.

3.1.2. The functor corepresented by a biring ®:

A — Homgp(®,A) : Algg — Algo,
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admits a left adjoint, which we denote by B — ® ®¢g/ B, which is defined as
follows: ® ®¢s B is the quotient of the free O-polynomial algebra generated
by the symbols ¢ ©® b for ¢ € & and b € B subject to the relations

(¢+¢)Ob=00b+¢' Ob, ¢§Ob=(pOb)(¢ Ob), (r¢)Ob=r(p®b)
and
dO (b+b)=AL@)(L,)V, pobl = AL(@)(DB,Y), ¢©sb=ss(d)Ob

for all ¢, ¢’ € @, b,b' € B, r € O and s € O’. The O-algebra ® ®¢ B is called
composition product of ® with B.

3.1.3. If ® is an O-O’-biring and O — O” is a homomorphism then ® ®g O”
is an O”-O'-biring and (® ©¢o' B) ®0 0" = (® ®o O”) ®o B. The functor
Biringg o x Algg — Algg : (?,B) = ® ©or B commutes with colimits in
each variable. We give the two simplest examples when O = O’.

(i) The functor A — A is represented by the O-O-biring Ole].
(ii) Even simpler is the functor A — 0 represented by the O-O-biring O itself.

3.1.4. We now concentrate on the case O = O’ and just call an O-O-biring an
O-biring and shall drop O from the notation when there is no risk of confusion.
If ® and @ are two O-birings then we may consider the composition product
® © @ which, using the standard properties of adjunctions, is again an O-
biring. The composition product then defines a monoidal structure on the
category of O-birings with identity Ole]. The functor

O— PO —

from O-birings to endofunctors on Algy is monoidal and fully faithful.

3.1.5. An O-plethory is an O-biring ® together with the structure of a monad
on the functor A — ® ® A or equivalently a comonad on the functor A —
Homq(®, A). The remarks in (3.1.4) then show that to give the functor A —
® © A the structure of a monad is equivalent to giving

(i) a homomorphism of O-birings ig : Ole] — ® and

(ii) a homomorphism of O-birings he : @ © & — &

such that

h@O(@@i@)Zh@O(i@@@)Zid@ and hq;o(@@h@):hq)o(h(@@q)).

()This notation means that if A (¢) = 3. ¢; @ ¢} then AF (¢)(b,b') = 3. (s @ bi) (s @ b})
and similarly for A% (b,b).
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3.1.6. If ® is an O-plethory we define a ®-ring to be an O-algebra A equipped
with an action of the monad ® ® —. Given a ®-ring A we denote by

ha: POA — A

the map defining the ®-ring structure on A. We denote the category of ®-
rings and compatible morphisms by Alg%. If A is an O-algebra then ®©® A and
Homg (®, A) are ®-rings and these two functors are the left and right adjoints
of the forgetful functor Algg — Alg. We have the diagram of functors, each
one left adjoint to the one below it:

PO0—

RN

P forget
Alg — 5 Algg,.

~_

HomO((b’_)

3.2. Witt vectors and arithmetic jets I

3.2.1. During §§3.2-3.4 we fix a Dedekind domain O with finite residue fields
and P C Idp a sub-monoid generated by some set of prime ideals of O and we
write K for the fraction field of O. Note that we allow Dedekind domains of
finite characteristic, e.g. O = F,[T].

3.2.2. Denote by W the free polynomial O-algebra generated by the symbols
Y for a € P. We make ¥ an O-biring by equipping the set

Homo (¥, A) = Homo (O[* : a € PLLA) 5 [ A: £ = (F®"))acp
acP
with the product O-algebra structure. We then give ¥ the structure of an
O-plethory by setting
ip:0le] = ¥:e—s oM and hg:TOU = U: "o p° s 0.
3.2.3. For each ring A we write I'(A) for the ring
I(A) := Homo(¥,A) = [] A
acP

and call it the ring of ghost vectors of A. We define the ghost jets of a ring A
to be the ring
U ©Op A.

Let us examine a little more the ring of ghost jets ¥ ®g A of a ring A and
what it means for A to be a U-ring.

Recall (3.1.2) that if A is an O-algebra then ¥ ®¢ A is given by the quotient
of the O-polynomial algebra

OW*®a:aeP,acAl
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by the ideal generated by the elements of the following form

PPO(a+d) =y Oa—-yYtoOb
Pt (ab) — (Y © a) (" © b)
PO (ra) —r(y* ©a)

for a,b € A, r € O. Now to give A the structure of a U-ring is the same as
giving an O-homomorphism

ha: Voo A—A

satisfying certain properties. In this case, the properties which must be satis-
fied are equivalent to the following:

(i) for each a € P the map ¢} : A — A defined by a — ha(¥* ® a) is an
O-algebra homomorphism,

(ii) for each a,b € P we have ¢§ o ¥§ = ¥§ o v = ¥, and

(iii) we have () =ida : A — A.
We see that if A is a W-ring then A has an action of the monoid P where a € P
acts by 9§ : A — A. This sets up a bijection between W-ring structures on
A and actions of P on A. Given a W-ring we will write ¢4 : A — A for the
corresponding P-action. In particular, the W-ring ¥ itself has the P-action

W g e g
for a,b € P. Note that the W-ring structure on O is given by

Py =1ido : O — O.

3.2.4. As we are dealing with rings equipped with endomorphisms, it will
be useful here to say a little about semi-linear self maps versus twisted lin-
ear maps. The example to have in mind is the following: if A is a ring of
characteristic p and A — B is an A-algebra then the p-power Frobenius

Fr%:B—>B:b»—>bp

is Frf}-linear where Fr} : A — A : a — a? is the p-power Frobenius of A.
This then induces an A-linear map, the relative p-power Frobenius, Frlf3 /A
Fri"(B) — B.

Now, a morphism of ¥-rings f : A — B is just a homomorphism such that
the diagram

LN
—
f
B
—

H+— >

A
|+
B
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commutes for all a € P. Viewing B as an A-algebra via f, the homomorphism
Yp : B — B is ¢} -linear and induces an A-linear map

U U (B) = B.

That the homomorphisms 3 for a € P commute is now expressed by the
condition that for all a,b € P we have

Va0 VR (Vh)4) = Vhya 0 YR (VF)4) = Vi) (3.2.4.1)

or in a commutative diagram:

XN

A7 (B) —————— Yi(B)
'y wg/A)l Jwa/A
/A

*(B) ———— B.

Moreover, if A is a ¥U-ring and A — B is an A-algebra then to give B the
structure of W-ring such that A — B is a W-homomorphism is the same as
giving maps Q,Z)%/A : Y3*(B) — B for each a € P such that @ZJ](;/)A = idg and
which satisfy the commutativity condition (3.2.4.1). The category of W-rings
over a W-ring A is denoted Algy, and its objects called WA-rings.

3.2.5. We now come to the matter of interest which is lifting the Frobenius.
We wish to impose on a W-ring A the condition that the homomorphisms wi :
A — A for p € P prime, be lifts of the Np-power Frobenius endomorphism
(recall that Np = #F,):

YA (a) = ™" mod pA (3.2.5.1)

This is done by enlarging the plethory ¥ in such a way that the endomorphisms
corresponding to the elements ¢, € ¥, for each prime p € P, will be forced to
satisfy the relation (3.2.5.1).

So for each integer n > 0 define sub-O-algebras A,, C ¥ ®¢ K inductively
by setting Ag = ¥, and for n > 0, setting A,11 to be the sub-A,-algebra of
¥ ®0 K generated by the subsets

pH MNP =9l (f) c P oK (3.2.5.2)
for p € P a prime ideal and f € A,,. Finally, we set
A= UnzoAn C ¥ ®o K.

Then A,, C ¥ ®o K is stabilised by the endomorphisms 9§, of ¥ ®o K for each
a € P,asis A C ¥ ®r K. Thus A,, and A admit unique W-ring structures
such that ¥ C A,, C A are W-morphisms. Moreover, for each n > 0, and each
f € A, it follows from the definition (3.2.5.2) of A,4; that

VR (f) = " mod pAnta
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and hence for all f € U,>oA,, = A we have
YR (f) = N mod pA.

3.2.6 Proposition. — There is a unique O-plethory structure on A such that
the inclusion ¥ — A is a morphism of O-plethories.

3.2.7 Remark. — Before we examine exactly what a A-ring is, the fact that
¥ — A is a morphism of O-plethories implies that every A-ring A inherits a
VU-ring structure and hence a family of endomorphisms ¢4 : A — A for each
a € P such that 1) = ids and ¢3* = ¢§ o ¢} for all a,b € P.

3.2.8 Proposition. — Let A be an O-algebra. We have the following:
(i) If A is a A-ring the endomorphism ¥} : A — A satisfies

YA (a) = ™" mod pA

for each mazimal ideal p € P.

(ii) If A is a W-ring and p-torsion free for each prime p € P (i.e. flat at p for
each prime p € P) then the given V-structure comes from a A-structure
if and only if for each prime ideal p € P the endomorphism 1/12 A — A
lifts the Np-power Frobenius

YA (a) = ™" mod pA.

In this case the A-structure inducing the V-structure is unique.
(iii) If each p € P is invertible in A then every V-structure on A is induced
by a unique A-structure.

Proof. — (i) and (ii) are (essentially) the definition of A-ring given in [4]. In
particular, see §§1.6-1.19 [4].

(iii) If each P in A is invertible any endomorphism 1/1& : A — A lifts the
Np-power Frobenius (trivially) and so this follows from (i) and (ii). O

3.2.9 Remark. — We point out that if A — B is a homomorphism of A-
rings then 1,/;& = Frig mod pA and the relative morphisms z,b]pg A wg*(B) — B
are now lifts of the relative Np-power Frobenius:
N Npx*

¢g/A = FrBS/Ap :FrA’; (By) — By
where we write Ay = A ®0 Fy and By, = B®o Fy.
3.2.10 Example. — Using (3.2.8) we are now able to give the first examples
of A-rings:

(i) Of course O is always a A-ring with ¥ : O — O equal to the identity.
The fact that w’é lifts the Np-power Frobenius is then Fermat’s little
theorem:

¥ (a) = a = a™" mod p

(recall that O/p = F is a finite field with Np-elements).
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(ii) The polynomial ring O[T] is a A-ring with Yo O[T] — O[T] given by
T+ TNe,

(iii) If O = Ok is the ring of integers in a number field, L/K is an abelian
extension and P C Idg, is the sub-monoid generated by the primes which
are unramified in L/K, then the ring of integers O, of L is a Ap-ring
with WéL = op/k,p : OL — OL given by the Frobenius element oy, , €
G(L/K) (cf. (1.3.1)). Examples of this form will be very important later
give the first link between A-structures and class field theory.

3.2.11. We now give an explicit description of what it means for a non-
flat ring to be have A-structure in the special case P = {p,p?,...} C Ido is
generated by a single prime ideal of O and the prime ideal p = (7) is principal.
In this case, a A-structure on an O-algebra can described explicitly, and this
notion was discovered independently by Buium [10] (for some of the many
interesting arithmetic applications of d-rings and d-geometry see [11]).

So let us describe A in this situation. Define elements 6,, € A for n > 0
inductively by dy = () and

Ont1 =7 (W) (62) — (6,)F) € A.
Let Ay C A be the sub-O-algebra generated by the elements {6, },,>0.

3.2.12 Proposition. — The inclusion A C A is an equality and Ay is freely
generated as an O-algebra by the elements {0y }rn>0.

Proof. — See §1.19 of [4]. O

3.2.13 Corollary. — With notation as in (3.2.11) to give an O-algebra A a
A-structure is equivalent to defining a map

ort A=A

such that:
(i) forr € O we have

(ii) for a,b € A we have
Sr(ab) = a6 (b) + 0?6 (a) + 7w (a)dx (D),

and
(iii) for a,b € A we have

Np—1

br(a+b) = bx(a) + . (0) + 3 = <l\f’> NP
=1

Proof. — Also see §1.19 of [4]. O

3
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3.2.14 Remark. — Let us spell out the equivalence between A-rings and
rings with an operator d, satisfying (3.2.12) explicitly, in the case A is flat.

If 6 : A — A is a map satisfying the conditions (i)—(iii) of (3.2.12) then it
follows that the map

YA A = Aars ™ 418 (a)
is a O-algebra homomorphism satisfying
wﬁ(a) = a™ 4 716, (a) = a™* mod pA.
Conversely, if A is a p-torsion free A-ring then the relation
¥a(a) = a™ mod pA
implies that there is a unique d,(a) € A such that
Ya(a) = a™ 4 16.(a)

and the fact that ¢} is an O-algebra homomorphism forces the map a — d(a)
to satisfy conditions (i)—(iii) of (3.2.12).

3.2.15 Remark. — We can now explain why the approach with plethories
was taken. To define a A-ring as an O-algebra with a Frobenius lift 1/12 A — A
is a perfectly reasonable thing to do, however, there is a hidden existential
quantifier in this definition: that for all @ € A there exists an a, € pA such
that wg(a) = a¥+ay,. This causes problems from the point of view of universal
algebra and the effect of the plethystic approach is to remove this existential
quantifier so that, rather than the Frobenius lift 1/12, is it the operator §, which
determines the structure.

3.2.16 Corollary. — If A is a A-ring then the kernel of the homomorphism
O — A is either prime to allp € P or A = 0 is the zero ring.

Proof. — We shall prove this in the situation of (3.2.12) remarking that it is
possible to reduce to this case once more of the theory has been set-up. So let
A be a A-ring and assume that 7 € p™ C ker(O — A). As the homomorphism
O — A is a A-homomorphism the kernel is stabilised by the endomorphism
dr : O — O which is given by

aNP —q
a t— .
s
In particular, we see that
Npn _ . n
571_(7_‘_11) — T m _ 7_[_anfl _ g1 — 7_‘_nfl(ﬂ_Np(nfl) - 1) € pn71‘
7T

Therefore, p"~! C ker(O — A) and by induction we find that O C ker(O — A)
and so A is the zero ring. O
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3.2.17. Let P/ C P be a sub-monoid generated by some set of prime ideals.
Then the restriction of the map ha, : Ap © Ap — Ap along Apr © Ap — Ap
makes Ap a Ap/-ring. Similarly, for Up and Wp:.

Now denote by

P"={a€eP:(a,b)=(1)forallbe P} CP

so that P’-P” = P and P’/NP” = {O}. By the remark above the map Ap» — Ap
extends by adjunction to a homomorphism of Ap/-rings

aprpr Ap/ ® Ap// — Ap

which is also a homomorphism of WUp-rings where P” C P acts on the left
factor.

3.2.18 Proposition. — The map ap: pr : Apr © Apr — Ap defined above is
a Ap/-isomorphism.

Proof. — This is Proposition 5.3 of [4]. O

3.2.19. We now define truncated versions of the birings A and ¥ as, when
we come to geometrise the theory of A-rings, they will be more well behaved
(cf. (3.2.22)).

We equip the O-algebra ¥ ®o K with an exhaustive filtration by sub-O-
algebras, indexed by the elements of P ordered by division, by setting (¥ ®
K), for a € P to be the sub-K-algebra generated by the ¢® such that b|a.
The intersection of this filtration with the sub-O-algebras A and ¥ induces
exhaustive filtrations by sub-O-algebras A, C A and ¥, C ¥ and we have
U, = O[I/Jb : b\a]

3.2.20 Proposition. — We have the following:
(i) for each a € P there is a unique O-biring structure on Ay making ¥, —
Aq a biring homomorphism,
(ii) for each pair a,b € P the homomorphism hy : A © A — A induces a
homomorphism Ag © Ay — Agp and this map is an isomorphism if a and
b are relatively prime.
Proof. — (i) This is Proposition 2.3 of [4].
(ii) This is Propositions 2.3 and 5.3 of [4]. O

3.2.21. Let A be an O-algebra. We write
W(A) = Homp(A,A) and Wy(A) = Homp(Aq, A)
and call these the rings of Witt vectors and Witt vectors of length a of A. We

also write
['(A) = Homo(¥,A) =5 [[A and Tq(A) =Homo(¥,,A) = []A
acP bla

and call these the rings of ghost vectors and length-a ghost vectors.
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3.2.22 Proposition. — Let a € P and let A be an O-algebra. Then
(1) If (A — Aj)icr is an étale cover of A so is (Wq(A) = Wq(A;)), and
(ii) for all homomorphisms A — B and all étale homomorphisms A — A’
the natural map
Wa(A/) ®Wﬂ(A) Wa(B) - Wa(A/ ®A B)

s an isomorphism.

Proof. — This is Theorem 9.2 and Corollary 9.3 of [4]. O

3.3. Witt vectors and arithmetic jets 11

The purpose of this section is to extend the definition of A-structures, Witt
vectors and arithmetic jets to sheaves for the étale topology.

3.3.1. Recall that Sh‘(é)t denotes the category of sheaves for the étale topology
over Spec(Q), or ét-sheaves over Spec(O). We begin with the arithmetic jets
and coghosts. Let X be an ét-sheaf and define the presheaves on Affg

Wa(X) : =X o Wq: Affg) = Set T'au(X) := X o'y : Affg) — Set.
3.3.2 Proposition. — Let a € P and let be X an ét-sheaf. Then
Wa(X) :=XoWq: Affg) = Set T (X)(X) := X o T'q : Affy — Set

are again ét-sheaves. Moreover,
(i) if X = Spec(A) is affine then

Wai(X) = Spec(Ag @A) and T'qu(X) = Spec(¥, ©® A),

(ii) Wax and Tqs commute with filtered colimits, and
(iii) W sends smooth affine Spec(Ok)-schemes to smooth affine Spec(Ok)-
schemes.

Proof. — Tt is clear that 'y, (X) of an ét-sheaf is again a sheaf, and for W, (X)
it follows from (i) of (3.2.22).

(i) This is clear for I'q, and Proposition 10.7 of [5] for W,.

(ii) This is clear for 'y, and Proposition 11.7 of [5] for Wy,.

(iii) This is Proposition 13.3 of [5]. O

3.3.3. For an ét-sheaf X we have the following simple description of I'q(X).
The fact that ['q(A) = Ilyep pjoA for all O-algebras A (3.2.19) shows that

Lo(X)(A) = X(Ta(A) = [] X(a)= ] X4,
beP,bla bEP,bla

that is

r.X) = [ X
beP,bla
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3.3.4. For an ét-sheaf X we call W, (X) the (ét-sheaf of) length-a arithmetic
jets of X and T'q.(X) the (ét-sheaf of) length-a coghosts of X.

Standard sheaf theory supplies W, and I'y, with left adjoints which we
denote by W and I'}. For a sheaf X we call W}(X) the length-a Witt vectors
of X and I'}(X) the length a-ghost vectors of X.

3.3.5 Proposition. — If X = Spec(A) is an affine scheme then
W;(Spec(A)) = Spec(W4(A)) and T';(Spec(A)) = Spec(I'y(A)).

Proof. — This is true for all left adjoints to push forwards along a morphism
of sites. O

3.3.6. For a sheaf X we have the following simple description of I'q,(X). The
fact that ['q(A) = [pep pjoA for all O-algebras A (3.2.19) shows that:

I*(X)= colim TI* A)) = li T, (A
a(X) sploim a(Spec(A)) Spgg(lggXSpeC( a(A))
= gl T1 specta)
bEP,bla
- H X
beP,bla

3.3.7. For a sheaf X, the inclusions A, — Ay and ¥, — ¥, (3.2.19), for
a,b € P with b|a, induce maps

Fow(X) = Tpe(X)  and Wi (X) = Wi (X)
and taking the inverse limit in each case over the a € P defines sheaves
I(X) :=1limle(X) and W, (X) :=lim Wq.(X)
a a

which we call the (ét-sheaf of) arithmetic jets of X and (ét-sheaf of) coghosts
of X.

Adjointly, there are also induced maps
Wi(X) - Wi(X) and Tj(X)—I'i(X)
and taking the colimit we obtain ét-sheaves

W*(X) ;== colimW3;(X) and I*(X):= colimI(X)
a

a

which we call the (ét-sheaf of) ghost vectors of X and the (ét-sheaf of) Witt
vectors of X. By construction the functor I'* is left adjoint to I'y, and W* is
left adjoint to W,.

Generalising the descriptions of I'q.(X) and I'}(X) we have

I.(X) = J[X and T*X) = J[X
acP acP
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3.3.8. The maps Aq ® Ay — Agp (3.2.20) induce maps
W (We(X)) = Wgp(X)  and - Wap(X) = Wau (Wi (X))
and taking the colimit and limit respectively over all a,b € P we obtain maps
pwe(x) * WHWH(X)) = WHX)  and  hy,(x) 1 Wi(X) = Wi (Wi (X))
which together with the natural maps
gay : X = WHX) and ) Wi(X) =X

induced by the compatible maps Ole] — A4 for all a € P equip W* with
the structure of a monad and W, with the structure of a comonad on Shg“.
We define the category of A-sheaves Sh/é\t to be the category of ét-sheaves X
equipped with an action of W* or equivalently a coaction of W,. The functors
W* and W, now define functors Sh%t — Shﬁ)’\t which are left and right adjoint to
the forgetful functor Sh§ — Sh&l. We have the following diagram of functors
each one right adjoint to the one below:

W*
&t forget ét
Sh§! Shét.
W*

In particular, the forgetful functor in the middle admits both a left and
right adjoint and so commutes with both limits and colimits. That is, limits
and colimits in Shf\t may be computed in Sh(é)t.

3.3.9. The same construction above applied to the maps ¥, ©® ¥y, — Uy,
equips I'* with the structure of a monad and I'y with the structure of a
comonad on Sh{}. In this case, it is easy to see that the map obtained

pir- ) TH(IT(X)) = T*(X)
is identified with the map
IIIx=II x~>]IX
beP acP a,beP cepP
whose restriction to the summand at b,a € P is the inclusion onto the sum-
mand at ¢ = ab € P. Similarly, the map obtained
hr.(x) : T«(X) = Dy (D« (X))

is identified with the map
1[x- 1111
ccP aeP beP

whose composition with the projection onto the factor at a,b € P is the
projection onto the factor at ¢ = ab.
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We define the category of WU-sheaves Shfif to be the category of sheaves X
equipped with an action of I'* or equivalently with a coaction of I'y. Then
' and T', define functors Sh%t — Shf},t which are left and right adjoint to the
forgetful functor Sh — Sh¢t. We have the following diagram of functors each
one right adjoint to the one below:

T

. forget .
ét ét
Shét — 57, gpét.

~_

T*

3.3.10. From the descriptions of the monadic and comonadic structures on
'™ and T’y it is easy to see that to give a sheaf X the structure of ¥ sheaf
is equivalent to equipping X with an action of the monoid P. Indeed, denot-
ing the action of a € P by 9§ : X — X the map I'"(X) — X defining the
corresponding action of I'* is just

e [[x=T"X) - X

aepP acP

As with W-rings if X — S is a morphism of W-sheaves the v¢-linear endo-
morphisms 9§ : X — X for a € P induce S-linear endomorphisms

Piys X = ¥§T(X)

satisfying the commutativity condition

U§ (W% s) 0 P s = ¥Xs = ¥ (W% s) © ¥ s (3.3.10.1)

for all a, b € P. Moreover, to give an ét-sheaf X — S over S a W-structure such
that the morphism X — S is a W-morphism is the same as giving maps 1§ /s

X — & (X) all a € P with ¢§(1/)s = idx and satisfying the commutativity
condition (3.3.10.1).

3.3.11. The inclusions A, — V¥, induce functorial maps for each sheaf X
g<a : T5(X) = WE(X)  and  y<q: Wae(X) = Tau(X)

which we call the length-a ghost and coghost maps.
The inclusions

O[tha] C O[thy : b € P, bla] = ¥q

induce for each a the a-ghost component and a-coghost components

o : X > T"(X) > W(X) 74: Wi(X) = Tu(X) = X
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which we denote by g, and 7, and view as maps from X — W*(X) or X —
I'(X) and similarly for the a-coghost maps. We then have

g<a =[J oo : Ts(X) = [[X = T*(X).
bla bla
Taking the colimit and limit along the length-a ghost and coghost maps we
obtain the full ghost and coghost maps
g:I"(X) - W"X) and ~v:W.(X)—=T(X).

Finally, the natural transformations given by the ghost and coghost maps
g: I —- W"and v : W, — [, are morphisms of monads and comonads
respectively and every A-sheaf X inherits the structure of a W-sheaf. That
is every A-sheaf X admits a canonical action of the monoid P which, as for
VU-sheaves, we denote by 9% : X — X for a € P (and similarly for the relative
versions (cf. (3.3.10)).

3.3.12 Proposition. — We have the following:
(i) For each A-sheaf X and each prime p € P the map
¢§< ><Spec(O) SpeC(Fp) : X ><Spec(0) SpeC(FP) — X ><Spec(0) SpeC(FP)
1s equal to the Np-power Frobenius endomorphism ofXxSpeC(o)Spec(Fp).
(ii) A U-structure on a scheme X, flat over O at all primes p € O, is induced
by a A-structure on X if and only if for each prime p € P the map
¢§( X Spec(0) SpeC(Fp) : X X Spec(0) SpeC(FP) —+ X X Spec(0) SpeC(FP)

1s the Np-power Frobenius endomorphism. Moreover, in this case such a
A-structure on X is unique.

(iii) If each p € P is invertible on X then every V-structure on X is induced
by a unique A-structure.

Proof. — See [6] or it is an exercise using Theorem 17.3 of [5]. O

3.3.13 Proposition. — We have the following:

(i) If f : X = Y an affine étale morphism of ind-affine-schemes then for
each a € P the morphism

Walf): Wa(X) = Wa(Y)

1s affine and étale.
(ii) If f : X = Y is a affine étale morphism of ind-affine-schemes then for
any affine morphism Y' — Y of ind-schemes the natural map

Wi(X xyY') = Wi(X) XWi(Y) Wi (Y')

is an isomorphism.
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Proof. — The case where X and Y are affine follows from (3.2.22) and we
shall reduce to this case. So write Y = colim;c1 Y; as a filtered colimit of
affine schemes, and for i € I write X; = X xv Y;.

(i) Let i,j € IwithY; = Y; = Y. Then as Y; and Y; are affine and X — Y
is affine we have a cartesian diagram

Wi(X;) —— Wi(Y,)
Wi(X;) —— Wa(Ys)

where the bottom arrow is affine and étale. Now taking the colimit over j
yields a cartesian diagram

WaXi) — Wa(Ya)

where the bottom arrow is affine, so that as (W2 (Y;) — WZ(Y))ier is a cover
we are done.
(i) Writing Y} = Y’ Xy Y; the morphism

Wi(X xy Y') = Wi(X) XWi(Y) Wa(Y)
is the colimit over ¢ € I of the morphisms
Wa(Xi xy, Yi) = Wi(Xi) xwi(v,) Wa(Yi)

which is an isomorphism as Y, Yg and X; are all affine. OJ

3.4. A-structures

3.4.1. Let S be a A-sheaf so that S is equipped with an action of the monad
W* and equivalently a coaction of the monad W,.
From the monadic point of view we write

us : W*(S) — S

for map defining the action of W* on S and we call this the structure map. The
fact that it defines an action of W* on S is the expressed via the commutativity
of the diagram

W*(S)

9
s
idg

S——S
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and the property that the two compositions

W*(us)

WH(W*(8)) == W*(S) —— 8

Hw* ()

coincide.
From the comonadic point of view we write

hs :S — W*(S)

for the map defining the coaction of W, and the fact that it defines a coaction
is expressed via the commutativity of the diagram

hs
S —>W*(S

and the fact that the two compositions

hs W (hs)
S —— W, (S) —= W.(W.(S))
hw . (s)

are equal.

3.4.2. We denote by Sh‘;\ts the category of A-sheaves equipped with a A-
morphism X — S. The functor

Wi, 1 Sh§' — Shi, : X = W.(X) Xy, (s) S

composed with the forgetful functor is a comonad on Sh§' and identifies the
category of S-sheaves X with a coaction of Wg, with the category of A-sheaves
equipped with a A-morphism X — S.

83.4.83 Proposition. — Let S be a A-sheaf and let X and Y be a pair of Ag-
sheaves. Then the functor

Sh —) Set : §' HOI’HAS, (XS’ YS’)
s a sheaf for the canonical topology.
Proof. — Let 8" — S be a cover of S in Shp,. Then S’ — S is also a cover when

viewed in Sh‘ét and so any Ag-morphism f’ : Xg» — Yg with the property that
the two pull-backs of f along the two projections S’ xgS" — S coincide descends
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to a morphism X — Y. It remains to verify that it is a Ag-morphism, which
is the commutivity of the

hx /s
X % WL(X) s S
fJ JW*(f)xw*@S (3.4.3.1)
hy s

However, using the identifications

W. (X) KXW, (S) S Xg s’ W. (X) XW.(S) s’

= Wi(X) xw.(s) Wi(S) xw, (s 8’

= W*(X X3 S/) XW*(S’) S/
and similarly for Y, the diagram (3.4.3.1) pulls-back along S’ — S to the
diagram

hXS’ /s’ ,

XS’ — W*(X) XW*(S/) S

f,J JW*(}”)XW*(S/)S/
hYS,/S’

YS’ — W, (Y) XW*(S’) S

which commutes by hypothesis. Therefore, as S’ — S is an epimorphism, the
diagram (3.4.3.1) commutes. O

3.4.4. Let S be a A-sheaf and let X — S be an S-ét-sheaf. Denote by Ax/g
the functor

Axs Sh‘;\ts — Set : §'/S +— {the set of Ag-structures on X xg S'}.

3.4.5 Proposition. — The functor Ax s is a sheaf for the canonical topology
on Sh‘/éfs.

Proof. — Let S’ — S be an epimorphism and write S” = S xg S, X' = X xg 5’
and X” = X xg S”. By the definition of a Ag-structure (in terms of W*) we
have an equaliser (the Homs are of ét-sheaves not A-sheaves)

Axs(S) —— Homg(W*(X),X) =% Homg(X, X) x Homg(W*(W*(X)),X)

where the first map sends a Ag-structure on S to the map ux : W*(X) - X
and the two parallel arrows send a map pux to

(1x © g1y, bw=(x) 0 px)  and  (idx, W*(ux) o px).
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Now consider corresponding commutative diagram:

Ax/s(S) —— Homg(W*(X), X) ——— Homg(X, X) x Homg(W*(W*(X)), X)

l | J

Ax/s(S") —— Homg(W*(X'), X) ——= Homg(X’, X) x Homg(W*(W*(X')), X)

Il I I

Ax/s(8") —— Homg(W*(X”),X) == Homg(X”,X) x Homg(W*(W*(X")),X).

The two right columns are equalisers as X’ = X xg S’ — X is a cover and
W* preserves push-outs and all three rows are equalisers. Therefore it follows
that the first column is an equaliser and we are done. O

3.4.6 Proposition. — Let O be the ring of integers in a number field K, | €
Ido an ideal and write P = Idg). Then a finite étale S = Spec(O[f~1])-scheme
X admits a Apg-structure if and only if X xg Spec(K) = Ilj<j<,Spec(L;)
where each L; is a finite abelian extension of K. Moreover, in this case the
Ap g-structure is unique and any morphism of finite étale Ap s-schemes is a
Ap s-morphism.

Proof. — Let X — S be a finite étale morphism. Then X xg Spec(K) =
;e1Spec(L;) with L;/K a finite extension and X — I;X; where X; =
Spec(Or,[f71]). If X — S has a Apg-structure then for each prime p € P =
Idg)K7 the Frobenius lift 4§ : X — X fixes the fibre of each X; over Spec(F})
so that 1/)’;( maps each X; to itself. It follows that the Ap g-structure on X
is induced by unique Ap g-structures on each X; and so we may assume that
X = X; is connected. In this case, write X = Spec(Oy[f~!]) with L/K a finite
extension. If 9B is a prime of L laying over the prime p then there is a unique
automorphism
opr/k X =+ X

whose restriction to fibre over Spec(Or,/B) is equal to the Np-power Frobenius
automorphism. But ¢§< also has this property and so op1/x = @Z)&. As the
maps ¥y = oyp,r/k commute and generate the group G(L/K) it follows that
G(L/K) is abelian. Moreover, the uniqueness of og1,/x = 0p 1,/ = ¢§< shows
that the Ap-structure on X is unique, is also a Ap g-structure and that any
morphism of finite étale Ap g-schemes is a Ap g-morphism.

Conversely, if each L;/K is abelian then there is a unique automorphism

Op,L; /K * Xz’ — X,’

lifting the Np-power Frobenius automorphism of the fibre over Spec(Fy). It
follows that setting ¢§( = Ujer01, /K p defines a Frobenius lift on X. Moreover,
as G(L;/K) is abelian these Frobenius lifts commute and so define a Ap g-
structure on X. O
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3.4.7 Remark. — In the notation of (3.4.6) if X — S is a finite étale Ap-
scheme then its Frobenius lifts 1§ for a € P will be denoted by og g, or just
0q. This agrees with (or extends) the conventions set up in (1.3.1).

3.5. Ghosts and coghosts
3.5.1 Proposition. — Let X be a sheaf. For each a € P the length-a ghost

map
ga : T3 (X) = We(X)
1s surjective on geometric points and so is the full ghost map

g:T*(X) = W*(X).

Proof. — Writing X = colim Spec(A) as a colimit of affine schemes, and
WH*(X) = colimg W} (X) and I'*(X) = colim, I'}(X) it is enough to show this
for

Spec(I'q(A)) = I';(Spec(A)) — Spec(Wq(A)) = W;(Spec(A)).
But the map Wy(A) — I'y(A) is integral with nilpotent kernel (Proposition
8.1 of [4]) and therefore

Spec(I'q(A)) — Spec(Wq(A))
is surjective on geometric points. ]

3.5.2 Proposition. — If S is an ind-affine scheme, and T an affine étale
W*(S)-sheaf then the sequence

TW*(S)) —2 T(T*(S)) == T(T*(S) xw-(s) T*(S))

is an equaliser.

Proof. — As W*(S) = colimgep Wi(S) and I'*(S) = colimgep I';(S) and fil-
tered colimits are exact, we may replace W*(S) and I'*(S) and T with W}(S),
[3(S) and T xyy+(g) W4 (S) respectively. Now writing S as a filtered colimit of
affine schemes we may assume that S is affine in which case the claim follows
as I';(S) — WZ(S) is integral and surjective, and therefore an effective descent
map for the category of affine étale schemes. O

3.5.3 Remark. — In order for (3.5.2) to be useful in applications we should
say something about the fibre product W*(S) xp-g) W*(S). Let p be a prime
ideal, a any ideal, n > 1 an integer and write Sy = S Xgpec(0) Spec(Fy) and
consider the two maps (where the inclusions are the obvious ones)

n Fern
rg}p)n 15, CS Jorty I'*(S) and ré?p)n : Sp LN Sp CS B T(S).

Then for i,j € {1,2} the two compositions



84 CHAPTER 3. A-STRUCTURES, WITT VECTORS AND ARITHMETIC JETS

(T‘(i) r<j) )

a,p™’ a,p™

are equal and the morphism

N
I IIs "

i#je{1,2} a,p”

i>n7r(j)n)
1p—‘;‘p F*<S) XW*(S) F*(S>

defines a nilpotent immersion onto the complement of the diagonal in I'*(S) Xy« (s)
I'*(S) (this follows by an iterated application of 17.1 [5]). Therefore, in the
notation of (3.5.2) an element of T(I'*(S)) is in the image of T(W*(S)) —
T(I'*(S)) if and only if for all prime ideals p, ideals a, integers n > 0 and pairs

i # j € {1,2}, it is equalised by the maps

T(rgf;n)

T(I™(S)) — T(Sp)-
T(Taj’pn)

3.5.4 Lemma. — If X is a scheme with the property that every finite set of
points of X is contained in an open affine sub-scheme of X then for each a € P
the length-a coghost map

V<a ® W (X) — Lax (X)
s affine.

Proof. — The property satisfied by X implies that there is an open affine cover
(X;)ie1 of X such that (I'q(X;))ier is an open cover of T'q.(X) (recall that g,
of a sheaf X is just a finite product of copies of X). However, the diagram

Y<a

Wa* (Xz) — Fa* (Xz)

J J (3.5.4.1)

T<a
W (X) —— T (X)

is cartesian by Proposition 12.2 of [5] ([5] also assumes that the open immer-
sions X; — X are closed but the proof that the diagram (3.5.4.1) is cartesian
does not use this assumption) and the top morphisms is affine. As (T, (X;))icr
is a cover of I'y«(X) it follows that the bottom row of (3.5.4.1) is affine. O

3.5.5. Let S be a A-sheaf and X an S-group sheaf. Then to equip X with a
Ag-structure making it a Ag-sheaf in groups over S is equivalent to equipping
it with a Ag-structure such that the defining structure map

hx/s X = W*(X) XW*(S) S

is & homomorphism of S-groups (recall the W, being a right adjoint preserves
limits so that W (X) is a Ay, (s)-sheaf of groups over W.(9)).
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3.5.6 Lemma. — Let S = colim;e1 S; be a A-ind-affine scheme, f : X — S
be an ét-sheaf over S and a € P. If for each i € 1, setting X; = X xg S;, the
length-a coghost map

V<a: W (Xz) — Lo (XZ)
is affine then the length-a relative coghost map
¥x/8,<a * Was(X) Xw,(9) S = Tax(X) X1y, (s) S
s affine.

Proof. — The morphism 7x /g <, if affine if and only if the morphisms

YX/S,a XS S

are affine for each i € I. Fixing such an i, as S; is affine (in particular, quasi-
compact) and

colim W;(S;) = W, (colim S;)

(by (iv) of (3.3.2)) there is some j € I such that S; — W.(S) factors through
Wai(Sj) = Wax(S). Therefore, we can factor vx /g4 Xs S; as the composition

W (X)) Xwau(s;) Si = Wan(Xj) Xrgu(s;) Si = Tan(Xj) Xry(s)) Si

where the first map is induced by W (S;) — I'ax(S;), which is affine as
Wai(Sj) = I'ax(S;) is affine, and the second is y<a Xr,,(s,) S; which is affine
as Yx;,a is affine by hypothesis. Therefore, x5 Xs S; is affine and we are
done. O

3.5.7 Proposition. — Let S be an A-ind-affine scheme, let A and A’ be a
pair of abelian schemes over S and let f : A — A’ be an S-homomorphism. If
f is a Yg-morphism then it is a Ag-morphism.

Proof. — Write S = colim;¢1S; as a filtered colimit of affine schemes. By
Theorem 1.9 of Chapter I of [21], for each i € T and a € P, the S;-scheme
A’ xg S; satisfies the hypotheses of (3.5.4) so that we may apply (3.5.6) to
deduce that the relative coghost homomorphism of length a

Yarssa s Wa(A') xw,.(9) S = Tas(A') X1, () S
is affine. Taking the limit over a we see that
Yarss : Wa(A') Xy, (g)S = Tu(A') xp_(5) S
is affine. Now let the Ag-structures on A and A’ be given by the S-homomorphisms
hass + A — W.(A) Xw,(5)S  and  hprg: A" — W, (A) Xw,(s) S
and let f: A — A’ be a ¥g-homomorphism. By hypothesis, the difference

haryso f— (Walf) Xw,(s)S) 0 hays : A = Wi (A') Xy, (g) S
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factors through the kernel of the relative coghost homomorphism v, /5. How-
ever, the kernel of v, /g is affine over S and any homomorphism from an abelian
S-scheme to an S-affine scheme is trivial. Therefore,

harys o f— (Wi(f) Xw,(s)S) ohass =0
and f is a Ag-homomorphism. O
3.5.8 Remark. — It follows from (3.5.7) above that if A is an abelian variety
over an A-ind-affine scheme S then any two Ag-structures on A, compatible

with the group law, coincide if and only if the underlying Wg-structures coin-
cide.



CHAPTER 4

CM ELLIPTIC CURVES AND A-STRUCTURES

In this chapter we explain the connection between CM elliptic curves and
A-structures. The first and main result being, essentially, that the moduli
stack of CM elliptic curves .Zcy admits a A-structure. The observant reader
will have noticed that we have not defined what it means for a stack to have a
A-structure and we do not propose to do so here (not because we cannot but
only because to do so would involve various 2-categorical issues that would
in this instance serve only to make matters more complicated than they need
be). However, we shall explain what we mean to prove.

We continue with the set-up in (2.2.1). So that all sheaves considered are al-
ways over Spec(Oxk) and we will use the theory of Chapter 3 with A-structures
relative to the full monoid of ideals Idp, (later we will also consider sub-
monoids).

Recall that to give a ét-sheaf X a A-structure is to give for each ét-sheaf S,
a map

hx(S) : X(S) — X(W*(8S))
which is functorial in S and such that:

(i) the composition

x(8) " x(w(9)) U x(8)

is the identity and
(ii) the two compositions

hx (S) X(pw=(s))
X(S) —— X(W*(S)) —= X(W*(W*(S)))
hx (W*(S))

are equal.

To this end we show that given an ind-affine scheme S and an element
of AMcnm(S), i.e. a CM elliptic curve E/S, there is a functorially associated
element of .Zcv(W*(S)), i.e. a CM elliptic curve Wy (E)/W*(S), satisfying
the following properties:
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(i) the pull-back of W¢,,(E) along the ghost component at (1) is canonically
isomorphic to E:

E = 90y (Wem(E)) = Wen(E) xwes) S,

(ii) the pull-back of Wy (E) along pg : W*(W*(S)) — W*(S) is canonically
isomorphic to Wy (WEy (E)):

ps(Won(E) = Wen (E) xw«(s) WH(W*(8)) — Wi (W (E))-

We call W¢y (E)/W*(S) the canonical lift of E/S. In addition to (i) and (ii)
above, we also show that the CM elliptic curve W¢,,(E) admits a canonical
Aw=(g)-structure. It is worth pointing out that these ‘canonical lifts’ are both
global and big — the base is S is an arbitrary ind-affine scheme over Spec(Ox)
and the Witt vectors over which we lift the CM elliptic curves have Frobenius
lifts at all primes of Oxk.

We now give a brief overview of each of the sections. The construction of
Wi (E)/W*(S) and the verification of its properties is the content of §1. We
also use this to define what it means for a CM elliptic curve over A-ind-affine
scheme E/S to have a canonical A-structure (what we really do is define what
it means for a morphism

SE Aou

corresponding to a CM elliptic curve E/S to be a A-morphism).

In §2 we consider a certain special class of CM elliptic curves (those of
‘Shimura type’) and show that they are exactly those admitting A-structures.
These curves were first defined and studied by Shimura ([33]), and subse-
quently by several other authors with particular reference to their L-functions
(see [13], [17] and [30]). We finish §2 by showing that many CM elliptic curves
of Shimura type admit global minimal models. This gives a broad generali-
sation of a result of Gross [22]. The proof we give is quite different to that
in [22] and relies ons a certain strengthening (A.4.8) of an old principal ideal
theorem (valid for arbitrary number fields).

In §3 we show how to (intelligently) construct the quotient of the universal
CM elliptic curve by its group of automorphisms and we show that this curve
descends to a smooth projective curve X — Mcy over the coarse sheaf Moy.
We also show that this descended curved admits a Ay, -structure and that
this Anig,,-structure can be used to construct the maximal abelian extension
of K in a natural way. This gives a canonical, integral and A-theoretic version
of the explicit generation of the ray class fields of K using Weber functions
of CM elliptic curves over fields. We end this section by showing that the
possibly mysterious curve X is non-other than Pll\/ICM'

In §4 we use the results of §1 and §2 to construct a flat affine formally
smooth presentation M‘éVM — Mcm of Moy The flat affine formally smooth
scheme M\CNM has a natural moduli theoretic interpretation, and is also a torsor
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under a certain affine flat affine group scheme CL\(])VK. Finally, we show that
M%VM admits a natural A-structure compatible with that on .Zcn\.

In §5 we exhibit a rather interesting relationship between a (variant of) the
canonical lift of an CM elliptic curve (over an arbitrary base) and its Tate
module. This gives an analogue for CM elliptic curves of a certain construc-
tion in p-adic Hodge theory involving Lubin—Tate O-modules and we end by
sketching a certain analytic analogue.

4.1. Canonical lifts of CM elliptic curves

We continue with the set-up of Chapter 2, so that we work over the base
scheme Spec(Ok) where Ok is the ring of integers of an imaginary quadratic
field. In order to apply the theory of Chapter 3, we will no longer be work-
ing with arbitrary sheaves S € Sho, but only with ind-affine schemes S €
IndAffo, C Shoy.

By a A-structure is meant one relative to the Dedekind domain Ok and to
the full set of ideals P = Idgo,.

We note that if S is an ind-affine scheme then W*(S) is again an ind-
affine scheme and therefore a sheaf for the fpqc topology. Moreover, W, (S) =
hmaeldoK W (S) is an inverse limit of ind-affine schemes (as Wq, commutes
with filtered colimits and sends affine schemes to affine schemes) and is also a
sheaf for the fpqc topology.

For technical reasons we also work with the affine étale topology on IndAffg,
whose covers are given by families of affine étale morphisms (S; — S);er which
are covers when viewed in Sho, (or equivalently Sh%tK).

We shall also continue to work with the fibred category .#cy but from
here on view it as a fibred category over the category of ind-affine schemes
IndAffo, C Shoy, rather than all of Sho,.

Unless otherwise noted S will denote an arbitrary ind-affine scheme.

4.1.1. Denote by Zcm the rank one Oxk-local system over I'*(Spec(Ok))
whose fibre over the ghost component at a € Idp, is the constant sheaf a !,
i.e.
Zom = H al— H Spec(Ok) = I'"(Spec(Ox)).
acldp acldp
For an ind-affine scheme S we shall abuse notation and write Zc\ for the
rank one Og-local system over I'*(S) obtained by pulling back Zc\ along

'*(S) — I'*(Spec(Ok)).

4.1.2. Let E — S a CM elliptic curve . Writing ps : I'*(S) — S for the map

IT ds:*)= J] s—5,

ClEIdOK aEIdoK
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we define a new CM elliptic curve over I'*(S) by
Iem(E) = ps(E) @ox Zowm-

In other words, we have

TemE) = J[ Ewoga™ = [ S=r*(S).

aGIdOK aEIdoK

If f:E — E’is a homomorphism of CM elliptic curves over S then we write
Tom(f) = ps(f) @ox Lo : Tom(E) = Tom(E)

so that I'ty; defines a functor from the category of CM elliptic curves over S
to the category of CM elliptic curves over I'*(S).

By construction, the rank one Ok-local system Zcy over I'(S) satisfies
ZLom ®og 0t = ™ (ZLow) for each ideal a and this induces isomorphisms

Pon(E) ®oi a7~ == o (T (E)).-

We equip I'¢y;(E) with the U+ (g)-structure with the relative endomorphisms
given for each ideal a by the composition

Tom(E) = Ten(E) @oi a7~ == o (T (E)).-

In order to avoid overly cumbersome notation, we will denote this map by ¢f, /s
(instead of by the usual by monstrous ¢IC%M(E)/F*(S))‘ Note that ker(cp%/s) =
Do (E)al

The sheaf of rings %F*(S) = I'"(Okg) is naturally a sheaf of Wr«(g)-rings

and the %F*(S)—module structure

%F*(S) x e (E) = Tav(E)

is compatible with the W« (g)-structures.
If " — S is a morphism there is a obvious isomorphism of CM elliptic curves
over I'*(S') equipped with Wp.(g/)-structures

LEm(E) xpeg) TH(S") — Tom(E x5 ).

4.1.3. Write I'y(#cm)w for the fibred category over IndAffo, whose fibre
over S is the essential image of the functor E/S +— I'ty(E)/T'*(S) from CM
elliptic curves over S to CM elliptic curves over I'*(S) equipped with U (g)-
structures compatible with their Ok, (S)—module structure. The pull-back
maps for S’ — S are given by

E/T*(S) B xpe(g) T*(8)/T*(S).
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4.1.4 Remark. — The symbol T',(.#cy)w is only notation but it supposed
to inspire the following interpretation. Assuming .#Zcy did admit a A-structure,
and so a fortiori a W-structure, then we should have equivalences

M (S) = Hom(S, Acn) — Hom‘sl’pec(OK)(F*(S), M) = Tu(Ment)w(S).

Of course, we do not define a W-structure on .#Zcy;. Instead we opt to define
which morphisms (equivalently CM elliptic curves E/T*(S))

T*(S) 5 om

should be though of as (coming from) W-morphisms. The following gives some
justification to this.

4.1.5 Lemma. — The functor
Mov — Ui(Monm)w - E/S — Ty (E)/T(S)

s an equivalence of stacks with quasi-inverse given by pull-back along the ghost
component at (1)
E/T*(S) = g(1)(E)/S.

Proof. — The functor in question is clearly essentially surjective and faithful
as composing it with
E/T*(S) = g(1)(E)/S

yields a functor isomorphic to the identity on .Zcy. Now to see that it is an
equivalence, and that E/T*(S) — gZ‘l)(E) /S is a quasi-inverse, we need only
show that it is full.

So let f: Ty (E) — TEy(E') be a Wps(g)-isomorphism and write f as the
sum of its ghost components

r= 11 %
aeldoK

As fis a Wps(g)-homomorphism the diagram

B 9?1)(f) E/

J I
a(f)
E®o, 0~ — B @0, a~!
commutes for each a € Ido, by the definition of I't,;(E) and I'ty(E’) and

their Wr.(g)-structures. However, as i, is epimorphism the only map g;(f) for
which this is possible is gz‘l)( f) ®oy a~t. It follows that

f= 11 9 @oxa™ =Temlghy ()

ClEIdoK

and we are done. O
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4.1.6. Let E/W*(S) be a CM elliptic curve equipped with a Ay« (g)-structure
compatible with its %W*(S) = W*(Okg)-module structure. We say that the
Ay« (s)-structure on E/W*(8) is canonical if there exists a W (g)-isomorphism

E Xyw(s) I*(S) — Tom(9(y (E))

inducing the identity on gzkl) (E) after pull-back along g(;y : S — I'*(S). Such
an isomorphism is unique by (4.1.5) and so, when it exists, we shall denote it
by pE/w+(s)-

4.1.7 Lemma. — Let E/W*(S) be a CM elliptic curve.
(i) E admits at most one canonical Ay« (s)-structure.
(ii) If ' — S is a morphism of ind-affine schemes then, writing E' =
E Xyy+(s) WH(S'), the Ay -structure on E' is canonical and

pE/ws) Xr+(8) T (S) = prrjwe(s)-

(iii) Let (S; — S)ier be an affine étale cover in IndAffo, . If E Xyy«g) W*(S;)
admits a canonical Ay« (g,-structure for eachi € 1 then E/W*(S) admits
a canonical Ayy=(s)-structure.

Proof. — (i) Let E/W*(S) have a pair of canonical Ayy«(g)-structures and
write pg/w=(s),1 and pg/we(s),2 for the corresponding unique isomorphisms

E xyw(s) I*(8) — ol (B))

inducing the identity on gZ‘l)(E) after pull-back along g(;) : S — I'*(S). The
composition
~1
PE/W*(8),1 © PE/W*(S),2
defines an Wr. gy-automorphism of F*CM(gZ‘I) (E)) which is the identity on 901 (E)
after pull-back along g1y and so is the identity itself by (4.1.5).

It follows that the two Wp«(g)-structures on each E xyy«(g) I'*(S), induced
by the two Ay« (g)-structures on E and E/, are equal. Writing

¢E}/W*(S),1’/I’[)E/W*(S)72 B — ’l!}p*(E)

for the relative Frobenius lifts at p corresponding to the two Ay« (g)-structures,
we have shown that

Vb we(s)1 XW9) T (S) = U we(g) 2 Xwe(s) T7(S).
As T*(S) — W*(S) is surjective on geometric points (3.5.1), it follows by
rigidity that
p — P
Ve/we(s)1 = VE/w(s) 2
Therefore, the two Wyy«(g)-structures on E/W*(S) induced by the two Ay« (s)-

structures are equal and by (3.5.8) it follows that the two Ay« (g)-structures
themselves are equal.
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(ii) The CM elliptic curve E' := E xyy+(g) W*(S') has a natural Ayw-(g-
structure and the pull-back of pg w-+(g) along T*(S") — I'™*(S) defines a Wp-(g)-
isomorphism

pE/W*(S)XF*(S)F*(S’)
—

E' (s I (S') = Exwg)I(8) Lo (91 (E) x5 T (8) = Tom(g(y (E)

inducing the identity after pull-back along g(1). It follows by uniqueness of
such an isomorphism that

pE/w=(s) Xr=s) I (8") = prrjwe(s1)-

(iii) We will first show that E/W*(S) admits a unique Ay (g)-structure
inducing the canonical Ay« (g,)-structures on E xyy«g) W*(S;) and then show
that this Ay« (g)-structure is canonical. The family (W*(S;) — W*(S));er is a
cover in Sh§® and we have

W*(S”) = W*(Si Xs Sj) L) W*(SZ) XW*(S) W*(Sj)

by (3.3.13). By (ii) above, the two Ay« s,;)-structures on

E XW*(S) W*(SZ])

induced by pull-back are canonical and by (i) they are equal. By (3.4.4), this
defines an element of the equaliser

Agywe(s)(W(S)) —— Apyw=(s)(W*(Si) == HIAE/W*(S) (W (S5))

1,]€

or in other words, there is a unique Ay« (g)-structure on E/W*(S) inducing
the canonical Ayy«(g,)-structures on each E Xyy«g) W*(S;). The uniqueness
of the isomorphisms pgy.,. (W (S0)/W*(Sy) and their compatibility with pull-
backs (this is (ii) above) show that they descend to an Wp.(g)-isomorphism

pE/wes) * E Xwe(s) T*(S) — Tom(gfyy (E))
inducing the identity after pull-back along g(;) so that the Ay g)-structure
on E/W*(S) is canonical. O

4.1.8. Using (4.1.7) we may define a fibred category W (.#cnm)a over IndAffo,
by setting the fibre over S to be the category of CM elliptic curves E/W*(S)
equipped with a canonical Ay~ (g)-structure and whose pull-back maps for
S" — S are given by

E/W*(S) = E Xy W*(S').

4.1.9 Remark. — As with I',(Zcm)w the symbol W (#Zcwn)a is supposed
to inspire in the reader the idea that .#cy admits some A-structure and that
we have

Moni(S) = Homspec(0y) (S, Mom) — Hom o, (W (S), #ont) = W (Aen)a(S).
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4.1.10 Lemma. — The fibred category W.(#cn)a over IndAffo, is a stack
for the affine étale topology.

Proof. — Let (S; — S)ie1 be an affine étale cover and let (E;/W*(S;))ier be
a collection of objects of W, (.#Zcnm)a equipped with descent data relative to
the cover (S; = S);e1. By (ii) of (3.3.13) we have

W*(SZ]) = W*(Sl Xg S]) ; W*(Sl) XW*(S) W*(S])

an so we may view the objects (E;/W*(S;))ie1 of W, (#Zcm)a equipped with
their descent data relative to the affine étale cover (S; — S);er as objects
of #cm equipped with descent data relative to the fpqc cover (W*(S;) —
W*(S))ier. As Acwm is a stack over Sho, (2.1.2), the family (E;/W*(S;))ier
descends to a CM elliptic curve E/W*(S) unique upto compatible isomor-
phisms E Xy« g) W*(S;) — E;. It remains to see that E/W*(S) admits a
canonical Ay« (g)-structure and this follows from (iii) of (4.1.7).

In much the same way, using (3.3.13) and (3.4.3), A-isomorphisms of CM
elliptic curves with canonical A-structures also satisfy descent for the affine
étale topology and we find that W, (.Zcm)a is a stack over IndAffo,, . O

4.1.11 Theorem. — The functor induced by base change along the ghost
component at (1)

W*(//ZCM)A — //ZCM : E/W*(S) — ga)(E)/S
is an equivalence of stacks over IndAffo, for the affine étale topology.

Proof. — The functor in question factors as
W (Mom)n = Tl Mom)w — AMenm

where the first functor is E/W*(S) = E Xy« (g) I'*(S)/I"*(S) and the second
is pull-back along g1y : S — I'*(S). By (4.1.5) the second functor is an
equivalence and, as I'*(S) — W*(S) is surjective on geometric points, the first
functor is faithful by rigidity. Therefore,

W (Acm)n — Acm

is faithful.

Now fix a pair E,E'/W*(S) of CM elliptic curves equipped with canonical
A+ (g)-structures and let f : E xy«g) [*(S) = E' Xy=(g) [*(S) be a Wpu(g)-
isomorphism. Let p be a prime ideal, a any ideal and n > 0 an integer.
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Consider the diagram:

9a(f)
94(E) gx(E)
N — Gapn (f) v
Gapr (E) oo (B) (4.1.11.1)
t 2

R (g2 (B)) ———— Rl (g (E),

where the bar denotes pull-back along S = S X spec(Ok) Spec(Fp) — S and
the bottom vertical isomorphisms are the unique such making the vertical
compositions equal to the Np™-power relative Frobenius morphisms of m
and g} (E’) respectively (such isomorphisms exist as 1/1]'33” : E — E and ng :
E'" — E' lift the Np"-power Frobenius). As f is a Wp«(g)-morphism, the top
square of (4.1.11.1) commutes and, by functoriality of the Np™-power relative

Frobenius, the outer square commutes. As gﬁ(d}%n) is an epimorphism, it
follows that the bottom square of (4.1.11.1) also commutes. We will show
that this implies that the functor

W (Acm)n — Acm

is full.
For the functor to be full, it is enough to show that the (injective) map

O b k)
Isomwli(s) (E,E) — Isomrf(s)(Ep*( )in“*(s))

is surjective (where the super script A and ¥ denote A- and W-morphisms).
Now to show this, it is enough to show that each W« (g)-isomorphism

f : EF*(S) — E%*(S)

is obtained via pull-back from an isomorphism E — E’ over W*(S) as by (3.5.7)
it will follow that any such isomorphism E — E’ is also a Ay« (s)-isomorphism.
Applying (3.5.2) and (3.5.3) to the finite étale W*(S)-sheaf

Isom W (S )(E E'),

we see that f comes from a morphism E — E' over W*(S) if and only if,
for each prime p, each ideal a and each n > 0, the two pull-backs of f to
S:=8 X $pec(Ox) Spec(Fy) along the maps

FN'“
ScSEeS) and § =5 ScSABTHS)

of (3.5.3) are equal. This is precisely the commutativity of the bottom square
of the diagram (4.1.11.1) and therefore

W.(AMcm)n = AMcm
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is full.

Finally, for the functor in question to be an equivalence it is enough (as
both categories are stacks and we have already shown that it is fully faithful)
to show that for each ind-affine scheme S and each CM elliptic curve E/S there
is an affine étale cover (S; — S);er such that E xg S; is in the essential image
of

W (Acm)n — Acwm.

By (2.2.12) the family of S-sheaves
(Isomg™ (E[f], Ok /f,) = S)f

indexed by integral ideals f which separate units forms an affine étale cover of
S. We may then base change to any element of this cover and assume that E/S
admits a level-f structure for some integral ideal § which separates units, and
then we may assume that E/S = E(f)/Mg%\/I. This case is (4.1.12) below. O

4.1.12 Lemma. — Let § € Ido, separate units. The universal CM elliptic

curve with level f-structure E® — M(Cf%v[ 1s in the essential image of the functor
W.(Aem)n — A

Proof. — Write M = MJ),, E = E® and P =1d}}) and let P’ C Ido, be the
sub-monoid generated by the prime ideals dividing § so that P NP’ = {Ox}
and Idp, =P - P".

Then the finite étale Spec(Ok[f~1])-scheme M admits a unique Ap-structure
by (3.4.6). By the definition of the automorphisms o, = [p~']; : M — M there
exists a unique f-isomorphism

E®o, p' = 05 (E)

whose pull-back along M x Spec(F,) — M is the isomorphism v}, of (2.6.5). It
follows that setting wE/M : E — 0, (E) to be the composition
i — ~ *
E 3 E®o,p ' — 0i(E)
defines a lift of the relative Np-power Frobenius on E — M. Note that
ker (1%, /M) = E[p]. Let [ € P be another prime ideal and consider the dia-
gram

(

The kernel of the compositions along the top and right, and left and bottom of
(4.1.12.1) are both equal to E[pl] so that, as M is connected, these compositions
differ by scaling by some € € Og. As the f-torsion E[f] is constant over M,
and M — Spec(Ok)[f']), it admits a unique Ap y-structure by (3.4.6).
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The uniqueness of the Ap y-structure on E[f] now implies that the diagram
(4.1.12.1) commutes when restricted to the f-torsion and therefore € € Oﬁ’f.
However, f separates units, so that € € Oﬁ’f = {1} and (4.1.12.1) commutes.
As E is flat over Spec(Ox) this defines a Ap y-structure on E by (3.3.12).
Pulling-back E — M along the map I'p (M) — M corresponding to the
Wp-structure on M, we obtain an isomorphism of CM elliptic curves

ExuTpM) = [Jos®) 5 [ E®ox a7 = Tem(E) xr-an Th(M)
aeP acP
compatible with the \I'pI;(M)—structures. We then get a Wp«(yp)-isomorphism
Ten(E) = [T (E xuTH(M)) @o, b7
beP’

inducing the identity after pull-back along g(;) and where on the right hand
side the relative Frobenius lifts for p € P’ are defined in the obvious way.
Now set Ep := E xm Wp (M) where we have base changed along the

map puv : WpH(M) — M defining the Ap-structure on M. Then Ep has a
Ap ws (s)-structure by virtue of the facts that E /M has a Ap y-structure and
Wi (M) — M is a Ap-morphism. We also have Wr; (s)-isomorphisms

Ep xwis) TH(S) 2 E xn TH(S) 2 Tiy(E) xpey TH(M)  (4.1.12.2)

inducing the identity after pull-back along the first ghost component.
Finally, setting

E:= [] Er®o, b6 = [] Wp(M) = W*(M)
bep’ bep’

and defining relative Frobenius lifts on E for the primes p € P’ in the obvi-
ous way equips E with a Ay« (g)-structure. Again by construction we have a
U« (n)-isomorphism of CM elliptic curves

E Xw= ) I (M) — Ten(E)

inducing the identity after pull-back along the ghost component at (1). There-
fore the Ay« p)-structure so defined on E/W*(M) is canonical and E — M is
in the essential image of the functor

W (Acm)n — Ao

4.1.13. We now fix for all time an inverse equivalence
Mot = Wi Aom)a - E/S — Way(E)/WH(S)

to the functor W, (#cm,a) = #cm and call Wiy (E)/W*(S), equipped with
its canonical Ay g)-structure, the canonical lift of E/S.
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4.1.14 Remark. — We note for future reference that the proof of (4.1.12)

shows that the CM elliptic curve E( /Mg%\/I admits a AP () -structure and
7 CM

that this AP’I\/[&)\4 -structure has the property that there exists a AP,W{s M0

isomorphism

Wen(ED) Wi M) > BY 0 WhME,) = p1p (E)

>< o
WM& M3,

inducing the identity on E after pull-back to the ghost component at (1) (this
is (4.1.12.2)).

4.1.15. By virtue of the definition of Wy (E)/W*(S) we have a canonical
isomorphism

E = g{1)(Won(E)).
That is, the composition

90

Meni(S) "B MW (S)) "D Mo (S)

is canonically isomorphic to the identity. We will now show that the two

compositions
Wénm Wenm
Mem(S) —— Mem(W*(S)) —= Aem(W*(WH(S)))
Hiv=(s)

are also canonically isomorphic.

4.1.16 Proposition. — Let S be an ind-affine scheme and let E/S be a
CM elliptic curve. Then there is a unique isomorphism, compatible with the
Aw=(w(s))-structures,

1) (Wem(E)) — Wen(Wem(E))
inducing the identity after pull-back along gy : W*(S) — W*(W*(S)).

Proof. — Both p*W*(S)(W¢y(E)) and Wy (Wi (E)) are equipped with
natural Ay« (w-(g))-structures and the pull-backs of each along the ghost com-
ponent at (1) are equal to W¢y(E). Therefore, it is enough by (4.1.12) to
show that the Ay« (w-(g))-structures on My (s) (Wi (E)) are Wy (W (E))
are canonical.
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For Wy (W (E)) this is true by definition. For Iy (s) (Wg(E)) we have
the sequence of Wp«(w+(g))-isomorphisms

v (s) (Wem(E)) xwwe(s) T (WH(S)) = (Wem(E) xwes) WH(W*(S))) xw+w=(s)) I (W*(S))
= Weu(E) XW+(S) " (W*(S))

= [T (Wem®)

a
= [ Wen(B) @0, o
a

~

— Ton(Wem(E))
= Tom(g() (=5 (Wem(E)))).

The resulting Wr« = (g))-isomorphism

Hv+(s)(Wem(E)) xw=w(s)) T (W*(8)) — Ten(g(y) (u§(Wen (E))))

induces the identity after pull-back along the ghost component at (1) and this
is precisely the definition of a canonical Ayy=(w=(s))-structure. O

4.1.17. We now define what it means for a CM elliptic curve over an arbitrary
A-ind-affine scheme (not just those of the form W*(S)) to have a canonical A-
structure.

It will be convenient later to allow ourselves the flexibility of working with
A-structures relative to a sub-monoid P C Ido, generated by some set of
prime ideals and so we fix such a P.

Let S be an Ap-ind-affine scheme and let E/S be a CM elliptic curve
equipped with a Ap g-structure (again compatible with its %S—module struc-
ture). We say that the Ap-structure on E/S is canonical if there is a Ap wi(s)-
isomorphism

Mgy 0 B xs Wi (S) — Won(E) xw=(s) Wi (S)

inducing the identity on the ghost components at (1). There is at most one
such isomorphism Ag/g satisfying this condition and so we are safe to label
it. Indeed, any two differ by a Ap ywy (s)-automorphism of Wen(E) Xw=(g)
Wi (E) inducing the identity on the ghost component at (1) and all such
automorphisms are the identity as this can be checked after pull-back along
I'5(S) — Wi(S), and arguing as in the proof of (4.1.5) one sees that a Up px (g)-
automorphism of I't,\;(E) xp«(g) I'p(S) is equal to the identity if and only if i
t is after pull-back to the ghost component at (1).

4.1.18 Remark. — When P = Ido, and E/W*(S) is a CM elliptic curve
equipped with a Ayy«(g)-structure then it follows from (4.1.16) that this Ay« (s)-
structure is canonical in the sense of (4.1.17) if and only if there exists a
A+ (g)-isomorphism

fE—= Wenlgy(E)
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inducing the identity after pull-back to the ghost component at (1), i.e. E/W*(S)
is canonical in the sense of (4.1.6).

Indeed, if there exists such an isomorphism f : E — WEM(Q*l)(E)) then
(4.1.16) gives an isomorphism Ag/yw-«(g) via the compositions

‘e IXwx gy W* (W*(S)) . . s
B xwe g WH(W*S)) = Wi (B) xwe(s) W (W*(S))
(4.1.16) « . (o
— Wem(Wem (g (E)))
* —1
Ml We(®),

Conversely, the pull-back of an isomorphism
Agyw(s) 1 B xyes) WH(W*(S)) — We(E)

along g = W*(g(1y) : W*(S) — W*(W*(S)) yields a Ay« (w-+(g))-isomorphism

f:E= WEM(gZ‘D(E)) via

T (Ag/w=(s)) ~
/_> (S) g*(

E = 77 (E xw-(s) W (W*(8))) Wom(E)) — Wenlg( (B)).

Hence the two notions of canonical A« (g)-structure on a CM elliptic curve
E/W*(S) defined in (4.1.6) and (4.1.17) coincide.

4.1.19 Proposition. — Let S be an Ap-ind-affine-scheme and E/S a CM
elliptic curve. Then:

(i) E/S admits at most one canonical Ap g-structure.
(ii) IfS" — S is a morphism of Ap-ind-affine schemes, the Ap g -structure on
E xg S’ is canonical and

Ap/s Xwi(s) Wp(S') = Aexss/sr-

(iii) Let (S; — S)ier be a ét-cover of Ap-ind-affine schemes. If E xg S’ admits
a canonical Apg,-structure for each i € 1 then E/S admits a canonical
Ap s-structure.

Proof. — (i) Let E/S admit two canonical Ap g-structures with corresponding
isomorphisms

/\E/Sa /\;-E/S ' E Xs W;(S) ;> WEM(E) XW*(S) W;(S)
The difference
B/s © )\E/ls : W (E) xwe(s) Wp(S) — Wi (E) xw=s) Wp(S)

defines Ap ws (s)-automorphism of W (E) xws) Wp(S) which is the identity
on the first ghost component. Base changing along I'p(S) — Wp(S) and
arguing again as in the proof of (4.1.5) we find that such an automorphism
must be the identity itself and so A\g/s = g /s
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It follows now that the two Ap w: (s)-structures on E xg W5(S) coincide so
that as Wi (S) — S is an epimorphism and Ap-structures descend (3.4.5) the
two Ap g-structures on E/S coincide.

(ii) This follows from the uniqueness of the isomorphisms Ag/s.

(iii) As canonical Ap-structures are unique and compatible with pull-back
(this is (ii) above) if E xg S; admits a canonical Ap g,-structure for each ¢ € 1
it follows that E admits a Ap g-structure. As the isomorphisms making a Ap-
structure canonical are unique and compatible with pull back (again this is
(ii)) the isomorphisms Agyg, /s, descend to an isomorphism

Arys 0 B xs Wi (S) — W (E) xw=(s) Wi (S)

inducing the identity after base change long the ghost component at (1) and
so the Ap g-structure on E/S canonical. O

4.1.20 Proposition. — Let{ € Ido, be an ideal which separates units. Then

the unique AP V() -structure on the universal CM elliptic curve with level-f
7 CM

structure EF) — Mg{\/l 18 canonical.

Proof. — This is the content of (4.1.14). O

4.2. CM elliptic curves of Shimura type

The purpose of this section is to explain the relationship between A-structures
and CM elliptic curves of Shimura type. A CM elliptic curve of Shimura type
is a CM elliptic curve E/Spec(L) where L is an abelian extension of K with
the property that the extension L(E[tors])/K is an abelian extension of K (it
is always an abelian extension of L).

This class of CM elliptic curves was introduced by Shimura (see Theorem
7.44 of [33]). By virtue of their definition, CM elliptic curves of Shimura type
have much simpler arithmetic than arbitrary CM elliptic curves (and of course
elliptic curves in general). In the special case where K has class number one,
every CM elliptic curve E/Spec(K) is of Shimura type, and the first (partial)
verifications of the Birch-Swinnerton-Dyer conjecture made by Coates and
Wiles ([13]) concerned these curves. Along these lines let us also mention the
paper of Rubin ([30]) which considers the Birch-Swinnerton-Dyer conjecture
for general CM elliptic curves of Shimura type.

Let us now give a brief outline of what follows. We first recall a result of
Shimura (4.2.2) stating the existence of infinitely many CM elliptic curves of
Shimura type over the Hilbert class field H of K. We then show that such CM
elliptic curves cannot have good reduction everywhere (4.2.4) and answer the
question raised in (2.4.5) regarding the triviality of the ¥.Z o, -torsor .#Zcwm.

We then prove the main result (4.2.8) which is that a CM elliptic curve
E/Spec(L) is of Shimura type if and only if it admits a canonical A-structure.
There are some minor technicalities in that one must avoid the ramified primes
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in L/K and the primes of bad reduction for E but we get around this naturally
enough.

The second part of this section concerns itself with the tangent spaces of
Néron models of CM elliptic curves of Shimura type. The A-structure on
E/Spec(L) induces a rather rigid structure on Lie algebra of its Néron model.
We then show (4.2.13) that if E/Spec(K(f)) is a CM elliptic curve of Shimura
type over the ray class field of conductor f, and the f-torsion of E is constant,
then the Lie algebra of its Néron model is free away from f, or in other words
that E/Spec(K(f)) admits global minimal model away from §. In particular,
if one takes f = Ok so that K(f) = H, this shows that every CM elliptic
curve of Shimura type E/Spec(H) admits a global minimal model everywhere.
This extends a result of Gross ([22]) and will be used crucially in (4.4) in our
construction of a flat affine A-presentation of the stack .Zcn.

4.2.1. Let L be an abelian extension of K and E/Spec(L) a CM elliptic curve.
One says that E/Spec(L) is of Shimura type if the extension L(E[tors])/K is
abelian.

4.2.2 Proposition (Shimura). — There ezist infinitely many prime ideals
p of K for which there is a CM elliptic curve E/Spec(H) of Shimura type with
good reduction away from p.

Proof. — By Proposition 7, §5 of [32] there exists infinitely many primes p of
K with Np = p a rational prime, Np = 1 mod w and (Np — 1)/w prime to w,
where w = #0Oy. Given such a prime p it follows that the reduction map

O — (Ox/p)”™

is the inclusion of a direct factor. Therefore, we may define a map « : A(X)K —
Oy satisfying a]olx( = idOIx{ by

ASK — (Ox/p)* — Ok

where the first map is the quotient map and the second is a retraction of
O — (Ok/p)*. Finally, setting

9:A5,/Og = Ag, : s mod O — sa(s) ™

we define p~! : G(H*P/H) — Ag, by

oo 0 koo
G(HP /H) 55 G (KD /) ™ 1905 A 0% 9 AX

We will now show that p satisfies the conditions of (2.5.8) to construct a CM
elliptic curve E/Spec(H) with pg/y = p. For each o € G(H*P/H) there is an
s € Ag, /Og such that olk= = Ok(s) € G(K>*/H). Unwinding the definition
of p~! we find

[p(0) "] = lg(s mod OK)] = [sa(s) '] = [s]
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so that by (iii) of (2.5.9) we have
(o] = [ofkeer]ic = [s] = [p(o) '],
Therefore, the diagram

1

G(H™P /H) —— A,

J (-]
(~]u

CLOK ,O0

commutes and by (2.5.8) there exists a CM elliptic curve E/Spec(H) with
pe/m = p- As ppju @ G(H*P/H) — Ag  factors through G(K*/H) — A,
it follows that H(E[tors])/K is abelian over K and E/Spec(H) is of Shimura
type. Moreover, E/Spec(H) has good reduction away from p by (2.5.12) as by
construction the composition

~

Of, = AJ, /0§ — G(K™/H) = AJ_
is equal to the natural inclusion OIXQ — A(X)K for all primes [ # p. O

4.2.3 Remark. — 1t follows from (4.2.2) above that the map cs/ 4 : Mo —
Mcewm from Zcy to its coarse sheaf admits sections Zariski locally over Spec(Ox).
Indeed, by (4.2.2) there are infinitely many primes p of Ox and CM el-
liptic curves E/Mcym[p~!]. Each map CE/Monlp—1] Mcum[p~!] = Mewm is
then equal to the inclusion M[p~'] — M followed by some automorphism
oq of Mcm. By (2.6.8), replacing E with E ®o, a, we may assume that
CE/Monlp-1] * Mom [p~] — Mcw is the inclusion.

We note for future reference that if p; and ps are two such primes with
E1/Mcoump; '] and Ea/Mcm[py '] as above, then the fact that CEy Moy[pr?] @0d
Chy/Monlpy ! A1€ equal to the natural inclusions implies that E; and Eo are

locally isomorphic on the over lap M [p; ] N Mem[py '] = Mo [(p1p2) 1 C
MCM.
4.2.4 Proposition. — There does not exist a CM elliptic curve E/H of
Shimura type with good reduction everywhere.
Proof. — Let E/H be a CM elliptic curve and consider the character (2.5.3)
pe/m : GK*P/H) — A .

If H(E[tors])/K is abelian then pg y factors as

o+ (K™ /H) = G(K™ /H) = A%,

(note that K* = K*). Composing the reciprocal pE/IH with the isomorphism

~

Ok : A5, /O — G(K>/H) = G(K®/H) of (1.4.8.1) we obtain a homomor-
phism
f Aok /Og = AQ,.-
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The fundamental relation [p;]/lH] = [~]n, the fact that [~]u = [~]k|a(kser /mH);
the fact that Ok o [—]k = |k~ and the fact that the inertia group I,(K*/H) C
G(K*°/K) corresponds to Oﬁp C AJ,/Ok C (Aok ®ox K)*/Og under 0k
combined with (2.5.12) shows that for E/H to have good reduction at all
places of H lying above a prime p of Ok is equivalent to the composition

O, C A, /0% EN A%

being equal to the inclusion Oﬁp C ACX)K. If this is true for all prime ideals p,
the composition of f with the quotient map

AZ, =A% JO% B AL (4.2.4.1)

is equal to the identity on the sub-group of ASK generated by the sub-groups
OIX(p for all primes p of Ok. But this sub-group is dense and so it follows that

the composition (4.2.4.1) is equal to the identity and this is clearly impossible.
O

4.2.5 Remark. — We can now answer the question raised in (2.4.5) asking
for a trivialisation of the ¥ Z o, -torsor .#Zo, . In light of the fact that the
coarse sheaf Moy of .Zcy is isomorphic to Spec(Og) it more natural to ask
the following: does there exists a CM elliptic curve & /Spec(Op) inducing a
trivialisation of the €% o, -torsor .#Zcwm, i.e. an equivalence of stacks

€ L0y % Spec(On) — Aoy x Spec(On) : £ /S — Es ®oy £ 7

While we have shown (4.2.4) that there do not exist CM elliptic curves E/H
of Shimura type with good reduction everywhere, it is possible for there to
exist CM elliptic curves &/Spec(On) (of course they will not be of Shimura
type). Indeed, Rohrlich [29] has shown that if the discriminant of K over
Q is divisible by at least two primes congruent to 3 mod 4 then there does
exist a CM elliptic curve & /Spec(Oy). The answer in general to the question
above is however negative. Indeed, if K has class number, so that K = H,
then every CM elliptic curve E/Spec(K) is of Shimura type and so cannot
have good reduction everywhere, i.e. there does not exist a CM elliptic curve
& /Spec(Ox).

4.2.6. We continue with the notation of (4.2.1) so that L/K is an abelian
extension and E/Spec(L) is a CM elliptic curve. We also fix an integral ideal
g € Ido, such that Spec(Or,[g™!]) is unramified over Spec(Ok) and such that
E has good reduction over Spec(Or[g~!]). We then set S = Spec(Or[g™'])
and P = Idgl)( so that S admits a unique Ap-structure (3.4.6) whose Frobenius
lifts we denote by o4 = 045 : S — S for a € P. We write & — S for the Néron
model of E relative to Spec(L) — S so that & — S is a CM elliptic curve. For
p € P a prime ideal let us write Sy = S Xgpec(0y) SPec(Fyp) and &, =S xg S,
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4.2.7 Lemma. — For each p € P, there is at most one homomorphism
1/120/8 1 & = 0,(8)
lifting the Np-power relative Frobenius map of &,.

Proof. — By rigidity the difference of two such homomorphisms is equal to
the zero map on some open and closed sub-scheme of S, the only choices of
which are S and (). Therefore, as any two such isomorphisms must agree on
Sp C S which is non-empty, they agree everywhere. O

4.2.8 Theorem. — In the notation of (4.2.6), the following are equivalent:

(i) The CM elliptic curve & — S admits a canonical Ap g-structure.
(ii) The CM elliptic curve & — S admits a Ap g-structure.
(iii) The extension L(E[tors])/K is abelian, i.e. E/Spec(L) is a CM elliptic
curve of Shimura type.
(iv) The homomorphism pg1, : G(L*P /L) — A5 factors through G(L*P /L) —
G(K?*/L).

Proof. — (i) implies (ii): This is clear.

(ii) implies (iii): For each ideal a the sub-schemes &[a] = ker(v% /S) C & are
finite and locally free Apg-schemes. After inverting a and forgetting about
the Frobenius lifts for primes dividing a, we may apply (3.4.6) to see that
K(E[a]) = L(E[qa]) is abelian over K.

(iii) is equivalent to (iv): This is immediate from the definition of pg 1,
(2.5.3).

(iv) implies (i): If g = Ok then L/K is unramified and so L. C H. However,
Mcyn — Spec(Op) and so we must have L = H. However, if L = H and g =
Oxk then E/Spec(H) admits good reduction everywhere which, as E/Spec(H)
is of Shimura type by hypothesis, is impossible (4.2.4). Therefore, g # Ox
and it follows that replacing g with g™ for some n > 0 we may assume that g
separates units (this changes neither Spec(Op[g™!]) nor P = Idgg{).

Write L/ = L(E[g]) and S’ = Spec(Or/[g~!]). The extension L'/K is abelian
(by hypothesis L(E[tors]) is abelian) and unramified away from g (as &[g| is
étale over S) so that S’ admits a unique Ap-structure. By construction, the
CM elliptic curve & xg S’ admits a level-g structure and, choosing one, we

obtain a map S — M(CQKA and an isomorphism & xgS' —» E® X (o) S’. As the
CM

morphism S" — Mg{d is a Ap-morphism and E® — Mégg/[ admits a canonical

AP (o -structure it follows that
TECM

& X3 S/ ;> E(g) XM(B) S/
CcM

admits a canonical Ap g-structure and by (iii) of (4.1.19) that & — S admits
a canonical Ap,s—structure. O]
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4.2.9 Remark. — Now let &, &’ be a pair of CM elliptic curves of Shimura
type over S (we keep g the same). If & and &’ are locally isomorphic (note
that there is always some ideal a such that & ®o, a and &” are locally isomor-
phic) then they are actually Ap s-locally isomorphic. Indeed, generically, they
become isomorphic over the extension L'/L corresponding to the character

pi= PE/LPE}/L : G(K*™/L) — O.

It is clear that the extension L//K is abelian and it also is unramified away
from g (the characters pg,;, and pg/, agree on the inertia sub-groups for
all p t g — this is the good reduction of & and &’ away from g). Therefore,
S’ = Spec(Or[g1]) is finite and étale over S and admits a unique Ap-structure.
Moreover, there exists an isomorphism

f:£XsS;><op/><sS’

and it remains to observe that all such isomorphisms are Ap g/-isomorphisms.
Indeed, f is a Ap g/-isomorphism if and only if the Ap g/-structure on & induced
by transport of structure along f is equal to the given Ap g-structure on &’
and this follows from (4.2.7).

4.2.10. We now wish to study the Lie algebras of the Néron models of CM
elliptic curves of Shimura type. So we continue with the notation of (4.2.6)
but will also assume that the CM elliptic curve & — S admits a canonical
Ap g-structure, i.e. that E/Spec(L) is a CM elliptic curve of Shimura type.
The field L must contain the Hilbert class field H C L. The following well
known property enjoyed by the Hilbert class field H will be crucial:

4.2.11 Proposition (Hauptidealsatz). — Every rank one Ok-module be-
comes free after base change to Oy.

4.2.12. We shall abuse notation and write, for each prime ideal p € P,

vy & Qo p ! U;(é")

for the unique isomorphism lifting the isomorphism 14, (&,/Sy) of (2.2.13) or
equivalently the unique isomorphism such that the composition

&2 E o p B ol (&)

is equal to the relative Frobenius lift 1/12;, /s

For a pair of primes p, [ the commutativity of the (relative) Frobenius lifts
on & — S amounts to the equalities

of (1) o (U ®ok p~1) = o (11) 0 (1 oy [7) (4.2.12.1)

so that for any ideal a € P, choosing a prime factorisation of a, we may define
isomorphisms
Va: & Roy a1 T 0k (&)
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by composing the various v, for pla, with the resulting isomorphism being in-
dependent of any choices involved by virtue of (4.2.12.1). These isomorphisms
now satisfy

o () © (Ve @0y 1) = 0 () © (Vp R0y @) (4.2.12.2)

for each a,b € P.

We can actually say more about the vy when o, = idy,. In this case, we
get an isomorphism v, : & ®o, a1 — 0%(&) = & which must be of the form
1 ®I(a) for some I(a) € Ok which generates a. If, moreover, there is an ideal
f such that E[f], and hence &]f], are constant then composition

Elf) = £l o a Y &1
is equal to the unique relative Frobenius lift

l(a) = Vgps = idgpy : €] = €]

so that {(a) = 1 mod f.
By the Néron mapping property the isomorphisms v, extend to isomor-
phisms on the full Néron model

Ve : Néro, (E) @0y 0™+ = o (Néro, (E))
satisfying the same commutativity condition (note that Néro, (E) is a smooth
group scheme of relative dimension one, not necessarily proper). Denoting by
T = Liexer,, (B)/Spec(Or)

the Lie algebra of the Néron model, which is a projective rank one Or-module,
the isomorphisms v, induce Ot-isomorphisms (which we denote by the same
letter)

Vo : T®ox a ' — oi(T)
for each a € P, satisfying the same commutativity condition (4.2.12.2) as the

vq on Nérg, (E).

4.2.18 Corollary. — In the notation of (4.2.12), if L = K(f) is a ray class
field and Elf] is constant then the Lie algebra of the Néron model Néro, . (E)
becomes free after inverting f. In other words, E/Spec(K(f)) admits a global
minimal model away from f.

Proof. — We have the isomorphisms
Vo : T®oy 0t — ok(T)

for each ideal a € P = Idgl)< and when o, = idoK(f) (this is the case if and only

if a = (a) is principal with ¢ = 1 mod f) the isomorphism

Ve : T®oga ' —5oi(T)=T
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takes the form 1 ® I(a) where [(a) € Ok is a generator of a such that [(a) =

1 mod §. We now apply (A.4.1) to extend [ to amap : Idgz< — Ok(j) satisfying

l(a) - Ok = a-Okq and I(ab) = l(a)oq(l(b)) (4.2.13.1)
for all a,b € Idgl)(. Define to : T — 0%(T) be the composition

1®1(a)~ 1
(a)

T T ®o, a + 2% ok(T).

Then t4 is an isomorphism by (4.2.13.1), and if a € Plringgl)mdf then tq = l(a) ®
I(a)~! = idy which, combined with the commutativity conditions (4.2.12.2) on
the v, and (4.2.13.1) on the I(a), show that ¢, depends only on the class o, €
G(K(f)/K), that tiq,;, = idr and that tor = t; 0 0*(t7) for o, 7 € G(K(f)/K).

In other words, the isomorphisms ¢, (or perhaps what is more standard,
their inverses) define Galois descent data on T relative to Ox — Og(j. As
Ok — Ogf) becomes finite and étale after inverting §, there exists an Ok [f~!]-

module T such that

To Qo 1] Oxp i1 — T @0y, Oxpli']-

However, as K(f) contains the Hilbert class field H, all rank one projective
Oxk[f~*]-modules become free after base change to Ok ;) [f~!] (all rank one pro-
jective Og-modules do by the Hauptidealsatz (4.2.11) and every rank one pro-
jective Ok[f~!]-module is a localisation of a rank one projective Ox-module).
It follows that

TO@OK[f_l}OK(f) [f_l] — T®OK(f) OK(f) [f_l] = @NéroL(E)/SpeC(OL)(@OL OL[f_l]

is free. O

4.2.14 Remark. — We note that when f = Ok (4.2.13) the condition on the
f-torsion becomes trivial so that any CM elliptic E/H of Shimura type admits
a global minimal model. This generalises the main result (see Corollary 4.4) of
[22] where it is shown that a CM elliptic curve E/H admits a global minimal
model whenever the conductor of K over Q is prime and the homomorphism
pr/u satisfies a certain invariance condition. One can show that these as-
sumptions imply E/H is a CM elliptic curve of Shimura type so that (4.2.13)
is indeed a generalisation of [22]. To say a little, the invariance condition on
pE/u is equivalent to E being isogenous to o*(E) for each o € G(H/K) and the
primality of the discriminant of K over Q implies that the order of G(H/K)
is prime to the order of O and together these properties allow one to show
that E/H is a CM elliptic curve of Shimura type (for a result along these lines
see Proposition 2 of [28]).
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4.3. Weber functions

The purpose of this section is to define, for each CM elliptic curve E over
an arbitrary base S, a certain quotient EE — Xg/g and then to study its re-
sulting properties. Informally, Xg/g will be the quotient of E by its group of
automorphisms %s' However, %S does not act freely on E and so the orbits
of are not well behaved. This makes it difficult to construct a quotient (in
the naive sense) with any useful properties. We get around this problem by
using Cartier divisors to define intelligent orbits for the action of O _ under
which it behaves as though it were free. Taking the quotient by the result-
ing equivalence relation, we get a smooth, proper curve Xg/g together with a
%S—invariant finite locally free map of degree w = #0j

PE/S : E— XE/S

The construction we give is functorial in E/S and so we may run it for
the universal CM elliptic curve & — .#cn to obtain a smooth, proper curve
Xe/tteny = Hom- Almost by definition, this curve descends to a smooth
proper curve f: X — My over the coarse sheaf.

The remainder of the section is devoted to the study of X — My, We first
show that it has the following properties:

(i) f:X — Mcum admits a natural Ay, -structure and a Aypg,,-point 0x :
Mem — X,

(ii)) f : X — Mcum has genus zero. Thus, if #x C Ox denotes the ideal
sheaf defining the closed point Ox : Mcy — X and % = f*(fgl) then
W is locally free of rank two over Oy, the map f*(#') — /X_l is an
epimorphism and the resulting map

X = PMCM(W)

is an isomorphism,
(iii) setting X[a] = @Dg(*/MCM(OX) C X, the scheme X][a] is a finite locally free
Ay -scheme of degree Na and K(X[a]) = K(a).

Thus the curve X — Mcy together with its Ay, -structure and its Ay, -
point Ox : Mcm — X allow one to construct the ray class fields of K in
an integral and coherent, choice free manner. Of course, this is just a more
streamlined and abstract approach to the classical construction of the ray
class fields of K using Weber functions — this approach being to choose a CM
elliptic curve E/H and to consider the image of E[a] C E under a ‘Weber map’

E — P4

which is a certain Oy-invariant map of degree w (see Theorem 5.6 of [34]).
The only defect of our approach is that the curve X — Mcys is not partic-
ularly explicit. However, we end the section by showing (by the same method
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we used to show that CM elliptic curves of Shimura type admit global minimal
models) that there exists an isomorphism X — Pl{/ICM'

4.3.1. We begin by recalling some basic facts regarding Cartier divisors on
curves (see §§1.1-1.2 Chapter I of [24]). Let S be a scheme and let X — S be
a smooth proper S-curve, i.e. X — S is smooth of relative dimension one and
proper. An S-relative Cartier divisor on X, or just a Cartier divisor, is a closed
sub-scheme D C X which is finite locally free over S. Equivalently, a closed
sub-scheme D C X is a Cartier divisor if and only if D — S is flat and the ideal
sheaf /p C Og defining D is a locally free rank one Ox-module. Given two
Cartier divisors D, D’ C X, their sum D + D’ C X is defined to be the closed
sub-scheme corresponding to the ideal sheaf /pip = Ip ®eg I C Ox,
which is again a Cartier divisor.

The degree deg(D) of a Cartier divisor D C S is defined to be the degree of
the finite locally free S-scheme D. We have deg(D + D’) = deg(D) + deg(D).
The structure map D — S of a Cartier divisor on X is an isomorphism if and
only if deg(D) = 1 and the set of degree one Cartier divisors on E is equal to
the set of S-points S — X. If s € X(S) is an S-point then we will denote the
corresponding Cartier divisor by s.

If f: X — X is a finite locally free map of smooth, proper S-curves
and if D C X is a Cartier divisor then f*(D) C X’ is a Cartier divisor and
deg(f*(D)) = deg(f) deg(D).

Given a pair of Cartier divisors D,D’ C X such that deg(D) < deg(D’)
(resp. deg(D) = deg(D’)) we can form the inclusion (resp. equality) S-sheaf
of D and D’:

Ing/5(D,D’) €S (resp. EqX/S(D,D') c )

defined by the property that T — S factors through Inx,s(D,D’) — S (resp.
Eax5(D, D’) — S) if and only we have an inclusion (resp. equality) of Cartier
divisors

DXsTCD/XSTCXXST (resp. DXST:D/XSTCXXST).

By Key Lemma 1.3.4 and Corollary 1.3.5 of [24], the sub-sheaves Inx /5(D, D’)
and Eqx /5(D,D’) of S are finitely presented closed sub-schemes of S. Finally,
if S’ — S is a morphism then we have natural isomorphisms

Inx,, /s'(Dsr, Dg) — Inx/s(D,D')ss  and  Eay,, s (Dsr, Dy) — Eqx/s(D, D).

4.3.2. Now let E/S be a CM elliptic curve. We would like to take the quotient
of E by the action of its group of automorphisms %SX but, as noted in the
introduction, this action is not free and in particular the map

I (eide) : ] E=0f,xsE—=ExsE

ecOx €Oy
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is not injective so that the orbits of points under this action are not well
behaved. Of course, one could just take the image of this map and obtain an
equivalence relation but then one would have little control over the quotient.

We get around this as follows. If s : S — E is an S-point, we define its
‘orbit’ [Og](s) C E to be the Cartier divisor

OK](s) = > €(s)

eGOfé

(note the sum is of Cartier divisors and has nothing to do with the group law
on E). Then [Of](s) C E contains the Cartier divisor s, is stable under the
action of OIX<S and is finite locally free of degree w over S (as the usual orbit
would be if the action of G were free). Equality of these ‘orbits’ defines an
equivalence relation on E, which we denote by

OX
Eqg C B xs B,

so that an S-morphism T — E xg E factors through qu% if and only if,
writing (¢1,t2) : T — (E xg E) xg T = E7 x1 Ep for the resulting map, we
have an equality of Cartier divisors

[Okl(t1) = [Og](t2) CEr =E xg T.

For this equivalence relation to behave as though it really does come from a
group action, it should be the case that, given two points s1,s9 : S — E then
having s; € [Og](s2), i.e. s1 : S — E factoring through [O](s2), should imply
the equality of ‘orbits’

[O%](s1) = [Og](s2).
With this in mind, we define the sub-sheaf

X

Inpk CE xsE

by the property that an S-morphism T — E xg E factors through Ing;‘s C
E xg E if and only if, writing (¢1,t2) : T — (E xg E) xg T = Ep x7 E7 for
the corresponding map, the Cartier divisor t; : E — Er factors through the
Cartier divisor [Og](t2) C Er, i.e. t1 € [Og](t2). There is a natural inclusion

0% (O}
E(}E;<S C IHE;(S CExsE

X
and our claim that the equivalence relation EqE}‘S behaves as though it were

coming from a free action of a group is that we have an equality

oy (0}
Eqp' = Ing i C E xg E.

Before we prove this, let us make two observations. First, the sub-sheaves

qu}‘S C Ingfs C E xgE are in fact closed sub-schemes. View E xg (E xgE) —
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E xg E as a CM elliptic curve over E xg E via projection onto the second two
factors and consider the Cartier divisors

ug/s;1: ExsE = Exg (ExsE): (e1,e2) = (e1,e1,€2)

and
ug/s2: ExsE = E xg (E xsE) : (e1,e2) = (e2,e1,€2).

Then it is an easy exercise to check that we have equalities of sub-sheaves of
E X8 E

OX
Eqy s = Edpxgmxsk)/Bxsp((Oxl(ur/s1), [OK](up/s2)) CEXg E

and
X

0
Ing g = Ing g (BxsE)/BxsB(UR/s,2, [Og](up/s2)) CExs E

so that by the representability of equality and inclusion sub-sheaves of Cartier
OX
1)S
Our second observation is that, viewing E xg E — E as a CM elliptic

curve over E via projection onto the second factor, we have an equality of

divisors we find that qufs and In_%, are closed sub-schemes of E xg E.

sub-schemes
OX
IHE?S = [O§](AE/S) C E xg E.
Indeed, fixing an affine scheme T over S and a morphism T — E, which
we identify with a morphism to : T — E xg T = Er, the pull-back of the
E-morphism [Og](Ag/s) C E xg E along T — E is given by

[Oxl(t2) CET =E xg T

(as the pull-back of Ag/g : E = E xg E is given by t2 : T — Er = E xg
T). Therefore, for a second S-morphism T — E, which we identify with a
morphism ¢; : T — Ep = E xg T, to have the property that the induced
map T — E xg E factors through [Og](Ag/s), is equivalent to the morphism
t1 : T — Er factoring through [Of](t2) C Ep. All said and done, a morphism
T — ExgE factors through [Og](Ag/s) C ExgE if and only if, in the notation

above, the morphism ¢; : T — E factors through [O|(t2) C Er which is to
say that T — E xg E factors through Ing}‘S

prove our claim.

C E xg E. We are now ready to

4.3.3 Proposition. — Let E/S be a CM elliptic curve. Then we have equal-
ities of closed sub-schemes of E xg E

0% 0X
Eqg s = Ing s = [Og](Ag/s) CE xgE.

X
In particular, qufs 1$ a finite locally free equivalence relation of degree w.
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Proof. — The only thing we need to show is that the inclusion
o o3
Eqy /g C Ingjy
is an equality. The first thing we note is that it is bijective on geometric points.
That is, if S = Spec(F) is the spectrum of an algebraically closed field F, and
(s1,52) € E(S) x E(S) satisfy s1 € [Og](s2) then [O%](s1) = [Of](s2). But this
is clear, as E is then a Dedekind scheme and unique factorisation of Cartier

divisors (i.e. of the corresponding ideals) shows that there exists an e € Of
(not necessarily unique!) such that s; = esy which gives

[Ok](s1) = [Ogl(es1) = [Og](s2)-
It follows that the inclusion
ox ox
Eqgjg C Ingjg,

which is a closed immersion, is a nilpotent thickening.

Now, our claim is local on S and so we may assume that S admits a level-f
structure for some § which separates units. It follows that way assume there
exists a morphism S — Mg%\/[ and an isomorphism

E L} E(f) X S
MCI\/[
and again by the compatibility of inclusion and equality schemes of Cartier
divisors with base change, we may assume that E/S = E(/ Mg%\/[, or what is
important, that S is integral.
We will now show that the nilpotent immersion
OX OX
EqE;‘S — InE;‘S
X
is an isomorphism by showing that Ingfs is reduced. Since S is an integral

scheme, it follows that E is also an integral scheme. Therefore, the finite locally

free E-scheme Ingfs C E xg E is reduced if and only if for some non-empty

open sub-scheme U C E the pull-back Ingfs xg U is reduced.
So let

U= () (E-E[L—).

1#£e€0

Then over U, the Cartier divisors
6*(AE/S XE U) :U—=ExgU

for e € O are all disjoint so that

Ingfs xg U= [O;éKAE/S) xg U= H 6*(AE/S XE U) = HE xg U.

eEOfé O;é
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It follows that Ing;‘S xg U and therefore Ingfs are reduced and the nilpotent

immersion
O Ox
Eq, /S C Ing /s

is an isomorphism. O

4.3.4. We are now ready to construct our quotients. So let E/S be a CM
elliptic curve. Then the Cartier divisor of degree w

O><
Eqg s = [Ogl(Ags) CE xg E

defines the equivalence relation on E/S where s1,s2 € E(S) are equivalent if
and only if

[Okl(s1) = [Og](s2)-
We write
pEss + E — Xg/s

for the resulting quotient (in the category of fpqc sheaves). As our equiva-
lence relation is finite locally free (and E is projective over S) it follows from
Corollaire 7.1 Exposé VII of [3] that Xg/g is representable by a scheme over
S. We have thus constructed a finite locally free %S—invariant map of degree
w

PE/S : E— XE/S

4.3.5 Proposition. — The S-scheme Xg g — S is smooth of relative dimen-
siom one, proper and geometrically connected.

Proof. — As E — S is proper, flat, and geometrically connected and pg/g :
X — Xpg is finite locally free of degree w (in particular, proper, flat and sur-
jective), it follows that Xy g — S is proper, flat, and geometrically connected.
As Xgsg — S is flat, it is smooth if and only if its fibres are smooth, but
when S is the spectrum of a field E is a regular scheme of dimension one and
E — Xg/s is finite locally free so that Xg/g is also regular of dimension one
and therefore smooth over S. O

4.3.6 Remark. — The method used above to construct the quotients Xg/g
applies more generally. Indeed, if X — S is a smooth (not necessarily proper)
curve, S is an integral scheme and G is a finite group acting generically freely
on X by S-automorphisms then there exists a smooth curve X/[G] and a finite
locally free G-invariant map p : X — X/[G] of degree #G@G, i.e. what might be
called a ‘quotient’ of X by G. It would be interesting to know whether this
method could be extended to construct ‘quotients’ of curves over more general
bases S, or under more general (non-constant) group actions.
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4.3.7. Let us now consider the functorial properties of the association E/S —

Xg/s. First, if f: E — E’ is a morphism of CM elliptic curves over S, then
X

(f xs f)] ox C qu,‘;S C E xg E and so there is an induced morphism

Eag g
Xyf: Xgss = Xgr/s and a commutative diagram

E—f>E’

pE/SJ{ JVPE’/S
X

XE/S E— XE’/S-

The invariance of pg/s and pr/ /s under OIX<S shows that f — Xy is also invari-

ant under OIX(S' In symbols, the map

Hom* (B, E') — Homg(Xg/s, Xp/s/) : f +> X
factors through the quotient sheaf
Hom{* (E, E') /05 — Homg (Xg/s, Xps1).

In particular, if E and E’ are locally isomorphic then Isom(s)K (E,E') is an
Oﬁs—torsor so that IsomgK (E,E")/ Ofés — S and we obtain a canonical map
S — Isomg(Xg/s, Xg//g) or what is the same an isomorphism

Xp/s — Xps.

4.3.8. Now let S be an Mcy-sheaf, i.e. S — Mcy. By the definition of the
coarse sheaf My, this implies that there exists a cover (S; — S)er of S and
CM elliptic curves (E;/S;)ier, such that for 4, j € I, writing S;; = S; xg S;, the
CM elliptic curves E; xg, S;; and E; X, S;; are locally isomorphic. Therefore,
writing X; = X, /g, for ¢ € I we have for all 7, j € I canonical isomorphisms

X, XS, Sij ;> Xj ij Szy (4381)

The independence of these isomorphisms from the choice of isomorphism
E; xs; Sij — E; xs; Sij (and similarly on the triple products) show that
the isomorphisms (4.3.8.1) equip the family of curves (X;/S;);er with descent
data relative to the cover (S; — S)ier, which furnishes us with (a priori) a
sheaf Xg — S. Similar observations show that the sheaf Xg — S is inde-
pendent (upto canonical isomorphism) of the cover (S; — S);er and the CM
elliptic curves (E;/S;);cr and that if S — S is a morphism of Mcy-sheaves
then we have a canonical isomorphism

XS’ ; XS XS S/.

In particular, applying this to idng,, : Mcm — Mcm we obtain a sheaf X —
Mceym and isomorphisms
Xs — X XMey S-
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4.3.9. Before we consider the geometric properties of the sheaf X — Mcy,
let us first make the following observations.

(i) There is a unique morphism Ox : Moy — X with the property that if
E/S is a CM elliptic curve and cg/g : S — Mcy is the coarse map then

C*E/S(OX) =0g: S— XE/S = C*E/S(X)
(ii) For each a € Idp, there is a unique morphism

B ptens X > 03(X)
such that for all CM elliptic curves E/S, using the identifications
CE@oya-1/S = 0a© Cr/s  and then cE@oKa*/S(X) = C*E/S(O':(X))
the diagram

ta

E E®o, a ! (4.3.9.1)

J /s WX men,) J’

s (X) ———— cys(@a(X))

commutes.
(iii) The morphisms @Dg( Mo - X = 0,(X) for p prime lift the Np-power rel-
ative Frobeniuses and for a, b any two ideals we have the commutativity

condition

w%b/MCM = U; (¢§(/MCM) © wg{/MCM

which equips Xg/g with the structure of a Wyj.,,-sheat.
(iv) The morphism 0x : Moy — X is a Wy, -morphism.

4.3.10 Proposition. — The sheaf f : X — Mcewm @5 a smooth, projective
curve of genus zero. In particular, if Ix C Ox denotes the ideal sheaf defining
the closed point Ox : Mcy — X then W = fX*(,ﬂx_l) is a locally free rank
two Oiey -module, the morphism f5(#) — I ' is an epimorphism, and the
induced map X — Py, (#) is an isomorphism.

Proof. — The fact that X — Mgy is a curve is immediate from the fact that
Mcm admits an open cover (M; — Mowm)ier with CM elliptic curves E;/M;.
Indeed, the defining property of X — My then gives

X XMem MZ ;> XEL/M’L

and we know that X, )\, is a smooth of relative dimension one, proper and
geometrically connected.

It remains to compute the genus. The genus is constant along the fibres
of a smooth, proper geometrically connected curve, and so to compute it we
may do so after base change along any morphism Spec(K*P) — M. Fixing
a CM elliptic curve E/Spec(K®*P) and considering the degree w finite locally
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free morphism p = pg/spec(keer) : E — X X1 Spec(K*P) the Riemann-Hurwitz
formula gives:

2-2m=w2-2x)— > (ez—1)
TEE(Ksep)

where g is the genus of E, gx is the genus of X x 1, Spec(K*P) and where e,
is the ramification degree of p at z. We have gg = 1, and for each x € E(K*P)
the ramification degree e, is equal to #Stab(z) — 1 where Stab(z) C Oy is the
stabiliser of z. It is now just a matter computation, depending on whether
Oy = 2, pua or g, to verify that the equality

0=(2-2gp) =w(2—29x) — »_  (ex—1)
zEE(KseP)

implies gx = 0. We do it for Og = pg. The only point with stabiliser g is
0 € E(K*°P), the points with stabiliser o C pg are the three points of E[2] —0
and the points with stabiliser pug C g are the two points of E[1 — (3] — 0 (for
(3 € ug a generator). Therefore, we find

0=6-(2—29x)—1-(6-1)—3-(2—1)—2-(3—1) = —12¢x

and hence gx = 0.
The other claims now follow using standard arguments from the theory of
curves. O

4.3.11 Corollary. — For eacha € Idoy the morphism Y% .+ X — 05(X)
is finite locally free of degree Na and together they equip X with the structure
of a Anigy, -scheme and the morphism Ox : Mcym — X s a Anig,, -morphism.

Proof. — As X is flat over Spec(Ox) it follows by (3.3.12) and (iv) of (4.3.9)
that X admits a Apig,,-structure and that the morphism Ox : Moy — X is a
Appey-morphism. The only thing we need to verify is that ¢§ /Mo is finite
locally free of degree Na but this follows from the diagram (4.3.9.1) defining
(ke /Moy 38 both columns are finite locally free of degree w and the top map is
finite locally free of degree Na and hence the bottom map must also be finite
locally free of degree Na. O

4.3.12. Write X[Ok] C X for the (image of) the morphism 0x : Moy — X,
and for each a € Idg, define Xa] := ¥§{*(X[Ok]) C X. Then X[a] C X is a
finite locally free Anpg,,-scheme of degree Na.

4.3.13 Proposition. — For each ideal a € Ido, the extension K(X]a]) of K
generated by the coordinates of X[a] is equal to ray class field K(a).

Proof. — As Mcy — Spec(Og) it is enough to show that the action of
G(K®?/H) on X[a](Spec(K*°P)) factors faithfully through the quotient G(KP/H) —
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G(K(a)/K). To do this we may choose a CM elliptic curve E/Spec(H) with
character pg/p @ G(K*P/H) — AJ and consider the map

P = PE/Spec(H) * B = Xg/spec() = X XMcy Spec(H).
Then p induces a surjective map of G(K*P/H)-sets
E[a](Spec(K*P)) — X[a](Spec(K*P))
and moreover factors through an isomorphism
Ela](Spec(K*P)) — E[a](Spec(K*?)) /O — X[a](Spec(K*P)).

Therefore, an element o € G(KP/H) acts trivially on X[a](Spec(K*®P)) if and
only if pg/nq(0) € (Ok/a)* is contained in the image of Og — (Ok/a)*, i.e.
in the notation of (2.5.1) if and only if [pg/pq(0)]a = 1. But

(o8 /11.0(0) "o = [0]10 = [0]Ka
and the kernel of [—]k 4 is precisely G(K*P/K(a)) and so we are done. O

4.3.14. We now wish to study the Lie algebra T := Liex )\1,, at the closed
point Oy, : Mom — X

4.8.15 Proposition. — For each a € Ido,. the map
Dy: T — 03(T)
induced by /lpg(*/MCM : X = 03(X) factors as
T — 0;(T) ®ox a* — 05(T)
where the second map is multiplication.

Proof. — 1t is enough to show that for each a, Zariski locally on Mgy, the
image of
Dg: T —o;(T)

is equal to a" ®g,,  0o5(T).

So let x € Mcym be a point and let S = Spec(Owmigy.2) — Mowm be the
inclusion of the local ring at z, and let E/S be a CM elliptic curve. The
inverse image of 0 : S — Xg/g = X X)¢y S along the map pg/s : E — Xg/g is
equal to [Of](0g) and as 0 : S — E is invariant under Of; we have [O%](0g) =
InfE)”E_l(E) is the (w — 1)st infinitesimal neighbourhood of Og : S — E. It
follows that, writing X = Info, (X) that pE/S(}zs) = Infy,(E) = E and that
the map

E—X

is finite locally free of degree w and Oy invariant.
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It now follows from Proposition 7.5.2 that, choosing an isomorphism E-
Aé there is a unique isomorphism Xg — Aé such that the diagram

E 4444%;25
L
AlNoﬁ(T)"l
Ag Ag

commutes where the bottom map is

@ Nog(@) = ][ [

e€O§

and [€](T) is the power series on Ké B representing the automorphism
e : E — E. But as the action of Ok is strict we known that [¢](T) = €T + - -
and so NOIX( (T) = —=T"% 4 ---. From this and the fact that the induced map

on Lie algebras of ¢f, ;5 B o, (E) factors as
Lieg/s — P @y, op (Lieg/s) — oy (Liegs)
the claim follows. O

4.3.16 Corollary. — The rank one Oy, -module T is free and there exists
an isomorphism
X 5 Py, -
Proof. — We have
X == Py (7)

where # = f.(#x ") where #x C Ox is the ideal sheaf defining the closed
point Ox : Moy — X. Moreover, we have an exact sequence

0= Omgy =% =T —=0.

As T is projective this exact sequence splits. Then by the same method as in
the proof of (4.2.13) one shows that the isomorphisms

Dy: T —a® D01y, alT)

can be turned into descent data from Mcy to Spec(Oxk) and so by the Haup-
tidealsatz T is free. Therefore, # — ﬁf/ICM and

X ; PMCM (W) ;> PMCM(ﬁﬁ/ICNI) = Pll\/[CM
O

4.3.17 Remark. — We end this section with a remark regarding possible
applications to monogeneity of rings of integers. Define Cartier divisors

O, C X[a] c X
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inductively by setting ©o, = X[Ok] and, having defined ©, C X[a], we define
Ogp to be

Oup =1 (03(Oa)) — Oa

if p { a (an analysis of the Appg,,-structure on X[a] shows that this is possible)
or to be

®ap = w;‘(*/MCM (U; (@u))

if pla. Then one can show that ©, C X is irreducible (but in general non-
reduced), that K(04) = K(a) and that

X[a] = > O,.

da

The identity above should be viewed as analogous to the factorisation of the
polynomials X" — 1 in terms of cyclotomic polynomials.

Moreover, when a is composite ©, and X[Ok| = O¢, are disjoint so that
one finds a closed immersion

Oa C X — X[Ok] = Py — X[Ok](#) = Ve (T) = Ap,,,-

With a more detailed analysis of the Ay, -structure on Xyiq,, = P%)H it
may be possible to show that the divisors (Oq)peq are regular which would
imply isomorphisms

(©a)red — Spec(Ok(q))-

This would then give closed immersion
SpeC(OK(a)) - A%)H — All\/ICM

or in other words Ok, would be monogenic over the ring of integers in the
Hilbert class field Og. It is worth noting that this method would only ap-
ply to conductors a which are composite, and that when a is not composite
counterexamples to the monogeneity of OK(a) over Oy are known to exist (see
[14]).

4.4. A A-equivariant cover of .Zc\

In this section we show how one can use the existence of canonical lifts of
CM elliptic curves to define a flat, affine and formally smooth cover of .Zcwm
admitting a A-structure compatible with that on .#Zcn. Indeed, we rigidify
Acm by equipping a CM elliptic curve E/S with a trivialisation of the Lie
algebra of its canonical lift. The results of (4.2) allow us to show that this
does indeed define a cover of .#cy with the desired properties.
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4.4.1. Let S be an ind-affine scheme. The category .%o, (S) acts on the
category .y (S). However, we have shown that .#Zcn(S) is equivalent to the
category W (Zcam)a(S) so that €% o, should also act on W (#Zcwm)a and
now explain how.

As W* commutes with étale fibre products and Ok is étale over S, the
sheaf W*(Okg) is naturally a Ay« )-sheaf of rings over W*(S). Moreover,
W* also commutes with disjoint unions which gives an identification

W*(Okg) — %W*(S)

compatible with the ring structures. In much the same way, if .Z is a rank one
Ox-local system over S, then W*(.Z) is a rank one Ok-local system over W*(S)
equipped with a Ay« g)-structure which is compatible with its %W*(S) =
W*(Okg)-module structure, i.e. the map

%W*(S) XW(S) W+ (mcL) — W* (f)

defining the action of %W*(S) on W*(Z) is a Ay (g)-morphism.

Now if E/S is a CM elliptic curve then, as both W¢y,(E) and W*(.&Z) have
Ayy+(g)-structures compatible with their Ok -module structures, and as the
forgetful functor Shpy. s — Shy=(s) commutes with all limits and colimits
(3.3.8), the CM elliptic curve

Wen(E) ®ox WH(Z)

is also equipped with a Ay« (g)-structure compatible with its %W*(S)—module

structure.
4-4.2 Proposition. — The Ay« s) structure on Wiy (E)®0, W*(Z) is canon-
ical and there is a unique Ay« (s)-isomorphism
WEM(E ®ok 3) — WEM(E) ®ok wr (X)
inducing the identity on the ghost components at (1).

Proof. — The Wr.g)-structure on W*(Z) xy=(s)[*(8) is compatible with the
isomorphisms

W*(Z) Xweg) [*(S) — I'"(Z) — £ xsT¥(S)
where the last fibre product is over the sum of the identity maps
)= J[ s—s
aEIdoK

and where the Wp.g)-structure on . xg I'*(S) is induced by the W-structure
on I'*(S). Therefore, we obtain Wp.(g)-isomorphisms

(Wen(B)®@0, W(2)) xw ()1 (S) — Ton(B)®0, ™ (£) — T'in(E®o,Z)

which induce the identity after pull-back to the ghost component at (1). This
is precisely the definition of a canonical Ay (g)-structure and this proves the
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first statement. As the ghost components at (1) of W, (E) ®o, W*(Z) and
Wen(E ®oy Z) are equal to E ®oy £ we get a unique Ay (g)y-isomorphism
Won(E) ®o, WH(L) — We(E ®oy £)
inducing the identity after pull-back along the ghost component at (1). O
4-4.3 Remark. — Consider the sheaf
W, (A1) = W.(Spec(O|[T])) = Spec(A ® Ok[T]) = Spec(A)

of arithmetic jets of A! over Spec(Ok). It is a ring scheme over Spec(Ox) and
its sections over an affine scheme S = Spec(A) are given by

W.(A1)(Spec(A)) = W(A).
The structure map

Ok — W(A) = W, (A)(S)
for varying affine schemes S = Spec(A) is injective (3.2.16) and induces a
monomorphism of sheaves of rings

iw : Og — W, (A1), (4.4.3.1)

This fact will be crucial for what follows.

4.4.4. Let .Z/S be a rank one Oxk-local system. A level-W structure on &
is an isomorphism of Oy (g)-modules

A WHL) B0k g Owe(s) — Ow=(s):

()

A W-isomorphism (£ /S, \) — (£'/S, \') of rank one Ok-local systems with
level-W structure is an Ok ¢-isomorphism h : & s &' such that

A=NoW*(h).

The tensor product of two rank one Ok-local systems with level-W structure
(Z,\) and (£, N) is defined to be

(g ®OK ‘g,’ >\ ®ﬁw*(s) >\/)

where we view A ®g,. . A as a level-W structure on .2 ®q, £’ using the

(S)
identification

W*(.Z @0y L) = W (L) @0, W (.L)).

We write %ZgK for the fibred category over IndAffo, with fibre over S
given by the category rank one Ok-local systems over S equipped with a level-
W structure (.Z'/S, \) together with their W-isomorphisms.

4.4.5 Proposition. — %X%VK is a stack over IndAffo, for the étale topology
and is equivalent to its coarse sheaf for the étale topology.
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Proof. — That %X%VK is a stack for the affine étale topology on IndAffo,
is easy to see using the fact that if £/S is a rank one Og-local system and
S” — S is any morphism then

W*(ZL) xws) W(S') = W*(Z xg 5)
and that for any étale morphism T — S we have

W*(S/ Xs T) ;> W*(S,) Xw*(s) W* (T)

For the second statement it is enough to show that if (£, \) is a rank one
Ok-local system with level-W structure then every W-automorphism of &
is trivial. But if € € OﬁS(S) defines a W-automorphism of .Z, we have an
equality

idw (2) ®0s ) IW(€) = W(€) @0y o 1oy (4.4.5.1)

(3 !
of automorphisms of W*(.%) DOk e s Oyy=(s)- As iw is a monomorphism and

the p is invariant under the automorphism (4.4.5.1) we must have e = 1. [

4.4.6. We write CL\(’)VK for the coarse sheaf of ‘Kf\évK with which we identify
it by (4.4.5). The tensor product of rank one Ok-local systems with level-W
structure equips CL\éVK with the structure of a sheaf of groups over Spec(Ox).

We now describe a short exact sequence relating CL‘(})VK to the Spec(Ox)-
group scheme of arithmetic jets W, (Gn) of Gn.

Let S = Spec(A) be an affine Spec(Oxk)-scheme. The sections of W, (Gyy,)
over S are given by

W.(Gm)(Spec(A)) = W(A)*
and the monomorphism (4.4.3.1) restricts to a monomorphism again denoted
W - Ofé — W*(Gm)
For each
a < Gm(W*(S)) = AUtW*(S)(ﬁW*(S))

we define an element [a]w € CL\(’)VK (S) by [alw := (Okg, @) where we view a as
the level-W structure on Okg:

OKyy+ (5) @Ok s) OW=(3) = Ow=(s) % Ow(s)-
This defines a homomorphism
[~lw : Wi(Gm) = CLg,
Finally, composing the forgetful map
CLY, = € Loy : (L[S, \) — £L/S
with the map 4% o, — CLoy of (1.5.4) we obtain a homomorphism

fw : CLJ, — CLo.
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4.4.7 Proposition. — The sequence of sheaves
0= 0% ™ W, (Gp) =¥ CLY ™ CLo, — 0

is exact for the étale topology and CL\(’)VK is representable by a flat, affine for-
mally smooth group scheme over Spec(Oxk).

Proof. — We first show that fw : CL\éVK — CLoy is an epimorphism for the
étale topology. This is equivalent to showing that for each ideal a (or at least
one in each ideal class of CLg, ) there is an étale cover S — Spec(Oxk) with
the property that the Ok-local system aq admits a level-W structure.

Let S = Spec(On) — Spec(Ok). Then we have an isomorphism of Oy« (s)-

modules
QW*(S) ®OK ﬁw*(s) L) a- ﬁW*(S)

where a-Oyy-(g) is the ideal sheaf defining the closed immersion W*(S) X gpec(0y)
Spec(Ok/a) = W*(S). However, this map is obtained by pulling-back the map
S X gpec(0k) SPec(Ok/a) — S along the morphism g : W*(S) — S defining the
A-structure on S = Spec(Oy). Therefore, it is enough to show that the ideal
sheaf defining the closed immersion S Xgyec(0,) Spec(Ok/a) — S is free, but
this sheaf is a ®o, Op which is free by the Hauptidealsatz (4.2.11).

We now show that the map [—]w : W, (Gn) — CL\g)VK defines an epimor-
phism onto the kernel of fy. It is clear that [—|w maps to ker(fw) as the
rank one Ok-local system underling [—|w is the trivial one. Now let S be an
affine scheme and let ((£/S,\) € ker(fw). We will show that there exists a
cover (S; — S);er and elements a; € W.(Gp)(S;) with [a;] = (L, As,).

Since (£, \) € ker(fw) it follows that & is étale locally isomorphic Okg.
Therefore, we may assume that (£, \) = (Okg, A) but then the isomorphism

A1 Okg @0y, Ow+(s) = Ow=(s) — Ow=(s)
is given by some a € W4 (Gmu)(S) = Autyy+(s)(Ow+(s)) and we have
(Okg: A) = (Okg, @) = lalw.

Finally, we compute the kernel of [—]w. So let a € W,(G,)(S) and as-
sume that [alw = (Oxg,a) = (Okg.idgy.s,)- By definition, this implies the
existence of an isomorphism

€€ Isom(s)K (Okg, Oxg) = %S(S)
such that W*(e) = a. But W*(¢) viewed as an element of
Aty o (Ow(s) = Wa(Gu)(S),

is precisely iy (€). Therefore a = iw/(e) and ker([—]w) = Ox™ C Wy (Gmn).
It follows from the above that the kernel of fyw is equal to the sheaf of
groups
W.(Gm)/Ok-
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However, Oy is finite étale and W,(Gy,) is flat and affine and so it follows
that the quotient sheaf

W, (Gum) /OF

is also flat and affine. As CLq, is affine, fw is an epimorphism and
CLY, XcLo, CLG, — CLY, x W(Gm)/Of

is affine and flat it follows that CL‘éVK is affine and flat over Spec(Oxk). Simi-
larly, as W, (Gyy,) is formally smooth (being an inverse limit of smooth affine
schemes) and W, (Gy,) = W, (Gm)/Ok ™ is étale it follows that W, (Gm)/Ox ™
is formally smooth and by descent that CL\(’)VK is formally smooth. O

4.4.8. Let S be an affine scheme and let E/S be a CM elliptic curve. A
level-W structure on E/S is an isomorphism of Oy« (g)-modules

p: Liews, (5)/w(s) — Ow=(s)

A We-isomorphism (E/S, p) — (E'/S, p’) of CM elliptic curves with level-W
structures is an isomorphism f : E — E’ of CM elliptic curves such that

— / 3 p
p=p'oLiews, ) w-is)(Wen(f))-

We denote by .///é’YVI the fibred category over IndAffo, whose fibre over an
ind-affine scheme S is given by the category of CM elliptic curves with level-W
structures together with their W-isomorphisms.

Just as with CL\())VK7 the objects of %g{d admit no non-trivial automorphisms
and so the stack ///é’}’v[ is equivalent to its coarse sheaf which we denote by
M@

There is an action of CL\())VK on M%VM given by

M\CNM X CL\SIK - M\(])VM : ((Z/Sa )‘)7 (E/Sap)) = (E ®OK "S/ﬂvp ®ﬁw*(s) )‘)
where we use the identification (4.4.2)
W*CM(E ®ok Z) — WEM(E) ®ok w (g)

4.4.9 Theorem. — We have the following:
(i) The forgetful map
M\CNM — MM
18 affine, faithfully flat and formally smooth.
(i) M) is an CL\(’DVK -torsor over Spec(Ox) and is therefore flat, affine and
formally smooth over Spec(Ox).
(iii) The map

M\éVMXSpeC(OK)W*(Gm) — M\C]JVMX///CMM%VM : ((E/S7 p)7 a’) = ((E/Sv p)7 (E/87 ap))

is an isomorphism.
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Proof. — (i) Let E/S be CM elliptic curve and write
T = Liew,,, m)/w=(s)-
Then the fibre of the map ,///(\3}\1(/1 — Mcon along S B Ao is given by

trys : Wa(lsomg, . o (T, Owe(s))) Xw. (we(s)) S =S

and so to the prove the claim we need only show that tg/g is affine, faithfully
flat and formally smooth.

We now show that tg/g is affine, faithfully flat and formally smooth when-
ever E/S admits a level-W structure. Indeed, if (E/S, p) is a level-W structure
on E/S then we obtain an isomorphism

G x W*(S) = Isornﬁw*(s)(T, Ow=(s)) rarra-p
and so an isomorphism
W (G x W(S)) xw, wr(s)) S — WalIsomg, , o (T, Owe(s))) Xw,w=(s)) S-

But

is faithfully flat, affine and formally smooth as
W.(Gpn) = lim Wq(Gn)

uGIdOK
is an inverse limit of faithfully flat, affine and smooth Spec(Oxk)-schemes.

As the morphism g /g is compatible with base change in order to finish the
proof of our claim, we may localise S and in particular assume that E admits
a level-f structure for some § which separates units. We may now assume that
S = M(Cf%v[ and that E = E0) and, by the previous arguments, to show that

t ¢y 1is faithfully flat, affine and formally smooth it is enough to show
E® /My,

that E() /Mg%v[ admits a level-W structure. To ease notation, let us write
M = Mg%\/[, E=ED P= Idg)K and P’ C Ido, for the sub-monoid generated
by the prime divisors of f (so that PNP’ = {Ox} and P - P’ =1Ido,).
Then W*(M) = W{(W5,(M)) and as § is invertible on M we have I'p,, (M) =
Wi, (M) so that
wr ) = [T wiw).
acP’

Using this and the fact that the Ap yi-structure on E is canonical (4.1.20) we
find

W*CM(E) ;> H MK/I(E) ®OK a_l = HMK/I(E ®OK a_l)
acP’ a
where
pm - Wp(M) - M

defines the (unique) Ap-structure on M.
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Now to show that E/M admits level-W structure it is enough to show that
Liepg, o-1/m = Lieg/n ®ox a~! = Lieg )\

(the last equality is because a € P’ is invertible on M) is free for each a € P’
but this is (4.2.13).

(i) Let (E/S, p) and (E'/S, p’) be a pair of CM elliptic curves with level-W
structures. Then E' — E ®q, £ for some .¥ € €. 0, (S) and therefore

Wen(E) @0, WH(Z) = Wi (E @0k £) = Wem(E).
We then have

Liew, @y/w+s) = Liews (Beo, 2)/w+s)
= Liew: (B)@o, W (2)/W*(s)
= Liew;, m)/wes) ®ox W(Z)

so that the isomorphism

P Liew: () wes) = Liews (m)/we(s) ®ox W (L) — Ow-s)

must be of the form p ®gy. o A where A : W*(Z) ®oy Ows(s) = Ow=(s) Is a
level-W structure on .Z. Therefore

(E,/Sv P/) = (Z/S,A) - (E/S,p) = (E®ox Z,p QG (s A)

and the action of CL\(SVK on MY, is transitive.

Let us now see that it is free which is equivalent to the claim that if (E/S, p)
and (.Z/S, \) are a CM elliptic curve and rank one Ok-local system with level-
W structure then there exists an W-isomorphism

f:(E/Svp);)(E@)Ongp@)‘)

only if there exists a W-isomorphism (Oxkg, 1) = (L, N).

So let f be such an isomorphism. Then f : E — E ®o, -Z is of the
form idg ®o h for a unique isomorphism % : Okg = % (2.4.4) and as f is
compatible with the level-W structures p and A® p, the isomorphism h defines
a W-isomorphism

(%57 idﬁW*(S)) - (Z))

and our claim follows.

Therefore, the action of CL‘(})VK on M\éVM is free and transitive so that to show
M), is a torsor it is enough to show that the structure map M@, — Spec(Ox)
is an epimorphism, but this follows from the work done in (ii) showing that
any CM elliptic curve E/S étale locally admits a level-W structure.

(iii) It is clear that any pair of level-W structures on a CM elliptic curve
E/S differ by scaling by an element of W, (Gy,)(S) which is the claim. O
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4.4.10. We now equip M%VM with a A-structure. As M%VM is flat and affine to
give M%VM a A-structure it is enough to define a commuting family of Frobenius

lifts w&w for each prime ideal p. We now set ¢§/IW to be the map defined on
VoM CM
S-sections

(E/Svp) = (E ®ogk pil/sawp*(p))

where 1P*(p) can be viewed as a level-W structure on E ®o, p~
identifications

L via the

PP (Wen(E)) = W (E) @oi b~ = Wi (E @oy p71).

It is clear that these maps commute and that they lift the Np-power Frobenius
endomorphisms modulo p. Finally, this equips the stack .#Zc\ with a flat affine
presentation

CLY, x My —= M@y —— Ao

and where the two parallel arrows are morphisms of A-schemes, again express-
ing the ‘fact’ that .#Zc\ is a A-stack.

4.5. Perfect A-schemes and Tate modules

In this final section we exhibit a rather interesting relationship the Tate
module of a canonical CM elliptic curve over an A-ind-affine-scheme and a
certain deformation of it to the perfection of S, which is the universal A-ind-
affine-scheme under S on which the Frobenius lifts are isomorphisms. We
then show that the canonical lift E/S can be deformed to a canonical CM
elliptic curve Epe/SP®". We end the section by making some remarks about
the relationship of this exact sequence with periods, both p-adic and analytic.

4.5.1. We first define the Tate module of an arbitrary CM elliptic curve. So
let S be an ind-affine scheme E/S a CM elliptic curve. The Tate module of
E/S is defined to be the pro-finite locally free S-group scheme

T(E) := lign Ela] ®o, a
where the transition maps are induced multiplication
E[ab] ®o, ab — E[a] ®o, a.
We also define the universal cover of E/S to be the sheaf
E:= licrlnE ®ok @

where again the transition maps are induced by multiplication. The inclusion
T(E) — E identifies T(E) with the kernel of the projection E — E so that we
have an exact sequence of sheaves (for the fpqc topology)

0— T(E) > E—E — 0. (4.5.1.1)
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4.5.2. Now let S be a A-ind-affine scheme. The perfection SP" of S is the
A-sheaf defined by

SPr —  colim S
acldo, Y0

where the transition maps are the Frobenius lifts. The action of the monoid of
ideals Idp, on SP®" is now by automorphisms so that it extends to an action
of the group of fractional ideals Idk. For a € Idk (now a fractional ideal)
we write wgper : SPT — SPeY for the corresponding automorphism. It follows
immediately from the definition that SP" is universal among A-sheaves lying
under S on which the Frobenius lifts are isomorphisms. When S = W*(T) is
the Witt vectors of an ind-affine scheme we write

W*(T) = W*(T)Pe".

Viewing S as a Agper-ind-affine scheme via the element of the colimit (4.5.2)
corresponding to Ok € Idp, we see that the structure map of the element of
the colimit (4.5.2) corresponding a is

a1
§ —s gper Y557 gper
and the colimit (4.5.2) can be rewritten as the colimit of SP*'-sheaves

SPr = colim  h%per(S). (4.5.2.1)

ClEIdOK 77/%1

4.5.3. If E/S is a CM elliptic curve equipped with a canonical A-structure
then we have a natural identification E ®o, a=! — 13" (E). Hence for a,b €
Ido, we have isomorphisms

E®b - 93 (E® ab)
and this gives for all a and b a Cartesian diagram

E ®o, b —— E®o, ab

| 1 s
_ P -1
oy (S) —— VGl (9).
We then define a A-sheaf over SP®" by

. . —1
Eper = colim E ®o, a = SP" = colim 9§per (S) = SP.
aEIdOK aGIdOK :

4.5.4 Proposition. — Epe is a CM elliptic curve over SP®" equipped with a
canonical Agper-structure.

Proof. — First, Eper admits a Agper-structure as it is a colimit of Agper-sheaves.
Secondly, as the colimit is filtered and the diagrams (4.5.3.1) are all cartesian
it follows that for all a € Idp,, we have Agper-isomorphisms

—1 ~
Eper XSPCY wgper!(s) — E ®OK a.
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This shows that Epe, is a CM elliptic curve. It now also follows from (iii) of
(4.1.19) that its Agper-structure is canonical, as the Ag-structures of E ®o, a
are canonical and (wg;,elr!(S) — Sper)acldo,, IS a cover. O

4.5.5. We now relate Epe, /SP" to E/ S. This is nothing more than an appli-
cation of certain adjunctions and the definitions. Indeed, for each ind-affine
scheme T — S, the morphism T — SP® induces a morphism w*(T) — Sper
and viewing W*(T) as a Agper-ind-affine scheme we have

HOmSper (W* ( ) per) - llm HOmSper wsperl (W* ( )) per)

(
= hm HOmSper(W*( ) wsper (Eper))
= hm Hom&pe: (W*(T), Eper @0 @)
= hgn Hom4 (W*(T), E @0, a)
= lign Homg (T, E ®oy a)
= Homg(T,E).
Therefore, we have a natural isomorphism of functors on ind-affine S-schemes
Hom&e: (W* (=), Eper) — Homg(—, E).
If we denote the left hand side by
W, (Eper)a : T/S > HomBes (W*(T), Eper)

then we may then rewrite the exact sequence of (4.5.1.1) to obtain the follow-
ing:

4.5.6 Theorem. — The is an exact sequence of fpqc sheaves

0—T(E)— W\*(Eper)/\ —E—0.

4.5.7. If now S is an ind-affine scheme (not a A-scheme) and E/S is any CM
elliptic curve then we may perform the above construction for W¢(E)/W*(S)
to obtain a CM elliptic curve

Wenm(E) == Wen(E)per = WH(S) = W (S)per
and an exact sequence of sheaves for the fpqc topology over W*(S):
0 = T(Wiy(B)) = W (Wi (E))a — Wiy (E) = 0. (4.5.7.1)

If we pull-back this exact sequence along the first ghost component g :
S — W*(S), and just write

W (Wen (E)als = o7y (W (Wens (B)))
then (4.5.7.1) becomes the exact sequence over S:

0= T(E) = W.(Wiy(E)als = E = 0
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(where we use the fact that ga)(WEM(E))) =E).

4.5.8 Corollary. — For any ind-affine scheme S and any CM elliptic curve
E/S there exists an exact sequence of fpqc sheaves over S

0 = T(E) = W.(Wy(E))als = E — 0.

4.5.9 Remark. — Although we have not discussed it, there is a completely
analogous theory of canonical lifts for Lubin—Tate O-modules for which the
above constructions can also be made. For O = Z,, and F = fi), the analogue

of the exact sequence (4.5.8) evaluated on Spf(Z,) gives

0 = T(ppoe ) (Zp) = ppoe (Aing)?= = pipo (Zp) — 0
where A™™ with its Frobenius lift ¢p is Fontaine’s ring, and we have used the
(non-obvious) fact that

Spf(A™) =5 W*(Spf(Z,)).

The image in jipe (A™f) of a generator e € T(jp)(Z,) is Fontaine’s element
[e], the logarithm of which is the p-adic period t.

4.5.10 Remark. — While there is (as yet) no theory of analytic A-structures
one can fudge a theory of analytic canonical lifts. Here let us sketch the
construction of an analytic analogue of the short exact sequence (4.5.8) relating
the period lattice of E*"/S*" to a certain analytic canonical lift of E/S.

So let S — Spec(C) be a complex scheme of finite type. We note that as
K c C, we have

WH(S)=T*(8) = [] S=Ido, xS

aEIdOK

and
W*(S) = Idk x S.
There is a natural analytic analogue of Idkx which we call Idc and is given
by (Idx x C*)/K* where a € K* acts on Idx x C by (a, s) — ((a)a, as). Note
there is a short exact sequence

0 — Og — C* = Idc — CLo, — 0.

It is natural, in light of the above, to define the analytic Witt vectors of the
analytification S*" of S to be the analytic space

W (S) := Ide x §*

together with its action of Idc.

We can now analytically mimic our construction of W¢,; over W™(S). So
define the rank one Og-local system %, to have fibre over (a,s) x S*" C
S x Ide = Wa™(S) the constant Oxk-local system associated to the rank
one Og-module s-a~! C s-K C C (note this depends only on the class of
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(a,8) € (Idg x C*)/K* =1d¢). If E/S is a CM elliptic curve then we define
Waii(E) to be

ps(E™) ®oy Zan
where pg : W2 (S) = Idg x S — S?" is the projection (cf. (4.1.2)).

The CM elliptic curve Wi (E) — W#(S) inherits a natural action of
Ido, (not Idg!) which is compatible with that on W2™*(S). Finally, setting
Wars(X) = Ide x X with its Idc action for any analytic space, we define a
sheaf on the big analytic site of S by

W3m (WERE () ls - X/S - Homygokt o) (W (X), Weli (E)).
Let us spell out here that the right hand side here denotes the Ido, -equivariant
analytic W*™*(S)-maps
W (X) — W (E).
With this definition one can show (almost as formally as in the algebraic
situation) that there exists an isomorphism of sheaves on the big analytic site
of San
Wi (WEM(E))als — Liegan jgan
and so the exponential sequence
0 — Toy (E*™) — Liegan gan — E™ — 0

of E*"/S?" can be rewritten as

0 — Toy (E*) = W (WeEN(E))als = E™ — 0.



APPENDIX A

ODD AND ENDS

A.1. Formal groups

The purpose of this section is to give an intrinsic definition of a (smooth)
formal group. We do this using Messing’s definition of infinitesimal neigh-
bourhoods given in [27], and the general theory of tangent spaces given in
[2].

A.1.1. First let us recall the construction of infinitesimal neighbourhoods
from Chapter II of [27] and some its properties. So fix a monomorphism of
sheaves Z — X. The kth infinitesimal neighbourhood of Z in X, denoted
Inf(zk) (X), is the sub-sheaf of X defined by the property that an affine scheme
T mapping to X factors through Inf(zk) (X) — X if and only if there exists an
fpqc cover (T; — T)ser and closed sub-schemes (T; — T;);e1 defined by ideals
whose (k + 1)st power is (0), such that the composition T; — T — X factors
through Z — X. Diagrammatically, we have

7 InfP) (X)X

T; ¢ T, T.

If Z — X is a closed immersion of schemes defined by a quasi-coherent ideal
& C Ox then Inf(Zk) (X) — X is the closed sub-scheme defined by the ideal
S (k+1) C 0x%x.
These constructions satisfy the following:
(a) For k < K’ there is an inclusion Inf(zk)(X) C Inf’%‘“(X). We write
Infz(X) = colimg Inf(zk) (X) and call this completion of X along Z.
(b) If X! — X is any morphism then we have

Inf{) (X) xx X' = Inf{f) (X))

(¢) If Z — X is an monomorphism of S-sheaves for some sheaf S and Y
is another S-sheaf equipped with an S-monomorphism Z — Y then, as
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sub-sheaves of X xg Y, there are inclusions:
Inf{ (Y xg X) € Inf (X) xg InfS (V) € InfP" (X x5 Y)
and taking colimits we have

IIle (X XS Y) = Infz (Y) X8 Infz (X)

A.1.2. Write Shg for the category of S-pointed S-sheaves. If X is a pointed S-
sheaf we write X = colimy, Infék) (X) for the formal neighbourhood of the point
S — X. The functor X — X preserves finite products of pointed S-sheaves so
that if G is an S-group, viewed as a pointed S-sheaf via the identity S — G,
then G is again a sheaf of groups over S which we call the formal group of G.

A.1.3. Here we recall part of the rather general construction of Lie algebras
given in Exposé II of [2]. Let S be a sheaf and ¥ a vector bundle. Make
Os @V a sheaf of quasi-coherent Og-algebras by declaring that ¥ be a square
zero ideal, and write Dg(?") for the S-sheaf whose sections over an ind-affine
scheme T — S are given

Ds(”f/)(T) = HomﬁT(ﬁT @ 7, ﬁT)

This defines a contravariant functor QCoh(0s) — Shg. If #1 and 75 are two
quasi-coherent Os-modules then the two projections %1 ® % — ¥; for i = 1,2
induce for each pointed S-sheaf X a morphism

Homg(Ds(71 @ 72), X) — Homg(Ds(71), X) xs Hom3(Ds(72), X) (A.1.3.1)

and a pointed S-sheaf X is said to satisfy condition (E) if for all vector bundles
¥4, V2 the morphism (A.1.3.1) is an isomorphism.

A.1.4 Proposition. — With notation as above:

(1) if X satisfies condition (E) over S and S — S is a morphism then Xg
satisfies condition (E) over S/,
(ii) X satisfies condition E for S if and only if there is a cover (S; — S)ier
such that for each i € 1 the sheaf Xg, satisfies condition (E) over S;,
(iii) if S is a scheme and X is an S-pointed ind-scheme then X satisfies con-
dition (E).

Proof. — (i) and (ii) follow immediately from the definition. For (iii) we may
assume that X is a scheme as filtered colimits preserve fibre products. In which
case the claim follows from the fact that

Homg(Dg(#), X) = A @os Hom g (Qx/5,6: O5)-
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A.1.5. If X is a pointed S sheaf satisfying condition (E) over S then, writing
Dén) = Dg(0™), the inverse of the isomorphism

Hom$ (DY, X) — Hom§(D”, X) xs Hom$ (D{", X)
composed with the map
Homg(D, X) — Homg (D", X)
induced by the sum ﬁg — Og defines a map
Homg (D, X) x Hom§(D§"”, X) — Homg(D§”, X).

This equips
Liey /g := 7H0m§(D(sl)7 X)

with the structure of an abelian group over S. Moreover, the S-pointed sheaf
Dél) admits an action of the sheaf of monoids &5 induced by the action of Og
on itself and this equips Liey /g with the structure of an Os-module. We call
Liex /g the Lie algebra of the pointed S-sheaf X.

A.1.6. Let S be a sheaf and let X be a pointed S-sheaf. We say that X is a
formal variety over S if the following conditions hold:

(i) the inclusion X — X is an isomorphism,

(ii) for each k& > 0 the morphism Inf(sk) (X) — S affine,
(iii) X is formally smooth and locally finitely presented over S, and
(iv) Liey /g is a vector bundle.(!)

A.1.7 Proposition. — Let S be a sheaf and X a pointed S-sheaf. Then the
following are equivalent:

(i) X is a formal variety over S,
(ii) there exists a cover (S; — S)ie1, integers n; > 0 for i € I and pointed
S;-isomorphisms

A% =Infg,(A%) 5 Xs,.

Proof. — This follows from Proposition 3.1.1 of [27]. O

A.1.8. The dimension dimg(X) of a formal variety X/S is defined to be the
map S — Ng giving the rank of the locally free g-module Liey s.

If S is a scheme and X/S is a smooth scheme over S equipped with a closed
S-point S — X then X is a formal variety over S. A formal group F over S is
a formal variety F/S which is also a sheaf of groups over S (with identity the
given point). As the functor X — X commutes with products, it follows that
if S is a scheme and G/S is a smooth separated group scheme over S then G /S
is a formal group over S.

(M) (i) and (ii) combined show that X satisfies condition (E) over S so that this makes sense.
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A.2. Serre’s tensor product

Here we give a (very broad) generalisation of a basic construction due to
Serre (Chapter XIIT §2 of [1]). The idea that this construction of Serre could
and should be generalised, at least in the study of CM elliptic curves, is not an
idea wholly original to the author (see §1.7.4 of [12]) however it was arrived
at independently.

A.2.1. Let S be a sheaf and let & be a sheaf of rings over S. We say that an
o/-module ¥ satisfies condition (P) if, locally on S, ¥ is a direct factor of a
free o/-module of finite rank. The class of «7-modules satisfying condition (P)
is clearly closed under the operations of taking .o/-linear Hom, tensor product,
direct factors and direct sums.

A.2.2 Proposition. — Let V satisfy condition (P). Then the functor
Mod(«/) = Mod(#) : G— G Ry ¥V
1s exact.

Proof. — We need only show that this functor preserves monomorphisms.
This is local on S and so we may assume that ¥ is a direct factor of a free
&/-module in which case it is clear as G R4 ¥ C G Q4 ™ = G"™ for some
n >0 and G — G" is exact. O

A.2.3 Proposition. — We have the following

(i) For each pair of o -modules V', W satisfying condition (P) and each pair
of &/ -modules G,F € Mod(</) the morphism

Hom¢ (F,G) @, Hom& (¥, #) — Hom& (F @, ¥ ,G @ #)

s an tsomorphism.

(ii) If G is an < -module satisfying condition (E) and ¥ is an </ -module
satisfying condition (P) then the natural morphism Lieq /s ®o V' —
Liegg,, v /s s an isomorphism.

Proof. — (i) The map defined is functorial and so we may, by adjunction,
assume that ¥ = &7 so that we are reduced to showing that the map

iy : Homg (F,G) @, # — Hom& (F,G @, )

is an isomorphism. The claim is clearly local on S so we may assume that
g™ =W ®W'. We then have iyn = iy @ iy so that it is enough to show
the claim for /" which is clear.

(ii) This is proved in much the same way as (i). O
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A.2.4. A formal &/-module over S is a formal group F/S equipped with an
action of &7. If we are given a homomorphism &/ — g then we say the action
is strict, or that F is a strict formal &/-module, if the two actions of .27 on the
Os-module Liep /g coming from the action of & on F and the homomorphism
o/ — Og coincide. In this case, if ¥ is an </-module satisfying condition (P)
then 7 ®4 Os is a locally free Og-module and we write k(%) : S — Ng for
the rank of this Js-module.

A.2.5 Corollary. — If F is a strict formal </ -module over S and ¥ is an
o/ -module over S satisfying condition (P) then F @, ¥ is a strict formal
o/ -module. Moreover, we have dim(F ®, ¥) = dim(F) - rk(¥")

Proof. — As the claim is local on S we may assume that 7 is the kernel
of some idempotent endomorphism &/ — &/™ for some n. The diagram of
S-pointed sheaves

F* — F"

I

Fy vV ——S

remains cartesian after applying Infék) for each k > 1. This shows that F®, ¥
satisfies conditions (i) and (ii) of (A.1.6) and by (A.2.6) we see that F®, 7 also
satisfies (iii). Therefore F @, ¥ satisfies condition (E) over S and by (A.2.3)
it satisfies condition (iv) of (A.1.6) so that F/S is a formal .&7-module over S.
That the action of &7 on F ®, 7 is strict and dim(F ® ,» ¥) = dim(F) - rk(¥)
follows from (A.2.3). O

A.2.6 Proposition. — Let f : G — F be a homomorphism of o7 -modules
and let V" satisfy condition (P). If f satisfies one of the following properties
then so does f Ry V  GQuy ¥V - FQy V:

(i) formally unramified, formally smooth or formally étale,
(ii) formally universally closed, formally separated, formally propert?)
(iii) locally finitely presented, quasi-compact or quasi-separated,
(iv) has connected geometric fibres,
(v) affine, or affine and flat,
(vi) finite locally free.

Proof. — All properties of morphisms of sheaves descend under covers of S so
we may assume that ¥ & ¥/ = &/™ and hence

([RQuV)®(f®w V) =f Qg d™ = f"

()Here we mean that G /S satisfies the local existence, resp. uniqueness (resp. local existence
and uniqueness) of the valuative criterion.



138 APPENDIX A. ODD AND ENDS

Moreover, these properties are all preserved by f — f™ and base change. From
the cartesian diagram

Gn = Fn

T (fR®x?)®0 T

(Goy V) dker(f®y V') —————— F@s ¥

we see that
(fRsV)®0=(f @y V) xsker(f @y V')

satisfies the given property. But ker(f ®. #’) — S is an epimorphism hence,
f ® V satisfies the given property. O

A.3. Strict finite O-modules

A.3.1. Here we give a short overview of faltings’ generalisation of Cartier
duality to strict finite O-modules [20]. We will then use it to prove (1.2.12)
and (1.2.13) as claimed (see (A.3.7)).

Let O be a complete local Dedekind domain with maximal ideal p, residue
field F of cardinality Np and fix an affine scheme S — Spf(O). In [20] faltings’
defines the notion of a strict finite O-module G over S and the notion of
a strict homomorphism between strict finite O-modules. We will not recall
the definition but only say the following. A strict finite O-module is a finite
locally free group scheme G over S, equipped with an action of O satisfying a
certain strictness condition. The strictness condition on the O-action means
that for each a € O, the endomorphism a : G — G, can be lifted along
a certain nilpotent thickening G — G? in such a way that this lift acts by
multiplication by a on the fibre of the cotangent complex of G/S at the origin.
A homomorphism f : G — G’ of strict finite O-modules is strict if it can be
lifted to a map G* — G” compatible with the lift of the O-action. We refer
the reader to §2 of [20] for the precise definitions.

In any case, one obtains the category of strict finite O-modules and it is
a sub-category of the category of finite locally free groups schemes over S
equipped with an action of O. Moreover, if S — S is a morphism and G/S is
a strict finite O-module so is G xg S’.

A.3.2 Example. — Every finite locally free étale group scheme over S equipped
with an action of O is strict and every O-linear homomorphism either to or
from an étale strict finite O-module is strict. This is explained by the fact
that the cotangent complex of such a scheme is trivial.

For each p-adic affine scheme S and each Lubin-Tate module F — Spf(O),
writing Fs = F xgp¢(0y S, the finite locally free group schemes Fg[p"] equipped
with their O-action are naturally strict finite O-modules over S.
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A.3.3. We now explain faltings’ version of Cartier duality for strict finite
O-modules. Let F = F be the Lubin—Tate module over Spf(O) associated to
the uniformiser m € O, so that

m:F—>F

lifts the Np-power Frobenius map over Spec(F) — Spf(O). Given a strict
finite O-module G/S we define the sheaf of O-modules over S

Dr(G) = colim Homg*" (G, Fs[p]).
Faltings then proves the following (see Theorem 8 of [20]):
A.3.4 Theorem. — The functor
G = Dy(G) := colim Hom{*" (G, Frs[p"])

defines a duality on the category strict finite O-modules over S and is compati-
ble with base change in S. Moreover, the degree of D (G) is equal to the degree
of G and if f : G — G’ is a strict homomorphism of strict finite O-modules
over S then D(f) is a closed immersion (resp. faithfully flat) if and only if
f s faithfully flat (resp. a closed immersion).

A.3.5. Given a strict finite O-module G we call D;(G) the dual of G.
If S has characteristic p then for each strict finite O-module G the Np-power
relative Frobenius map

Frels : G = B (G)

is strict so that taking the dual of the Np-power relative Frobenius map of the
dual of G one obtains a map

VG/S : FI'Np*(G) — G

and Faltings shows that the composition

Np

Fr Vv
G/S G/S
G =5 N (G) 24

G
is equal to the endomorphism 7 : G — G (see the paragraph of §7 [20]).

It is a formality to extend the duality G — D,(G) to a pair of functors
defining inverse anti-equivalences between the categories of ind-strict finite
O-modules and pro-strict finite O-modules.

The final observation we need to make is that if F/S is a Lubin—Tate O-
module then the inclusions

F[p"] — F[p"*]

are strict so that we may view F = colim,, F[p"] as an ind-strict O-module
over S. Moreover, with this definition every homomorphism of Lubin-Tate
O-modules over S is a morphism of ind-strict finite O-modules (this is a con-
sequence of the formal smoothness of F).
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A.3.6 Corollary. — The functor from ind-strict finite O-modules to pro-
strict finite O-modules
F/S +— lim D, (F[p"])
n

defines an anti-equivalence of categories between Lubin—Tate O-modules over
S and rank one O-local systems over S with quasi-inverse

XHFW/S ®o L.

Proof. — It is enough to show that given an ind-strict finite O-module G,
the pro-strict finite O-module D(G) is a rank one O-local system if and
only if G is a Lubin—Tate O-module. If D;(G) is a rank one O-local system,
as the functor D, is compatible with base change and being a Lubin—Tate
O-module is local on S we may assume that D, (F) — Os. We then get
G =5 Dr(DA(G)) =5 D (0g) = F/s so that G is a Lubin-Tate O-module.
Conversely, let G be a Lubin-Tate O-module. We claim that D, (G[p"]) is
étale for all n > 0. As D (G[p"]) is finite locally free and S is p-adic, to show
this we may assume that S has characteristic p. In this case, the composition

Np
G/S

Fr
G Y RN G) =Grop ! 22 G

is equal to 7 from which it follows that Vq/g is an isomorphism. This im-
plies that Vgpn) s is an isomorphism for all n > 0, so that D(Vgpn)/s) =

Frgi (Gpn))/s 18 an isomorphism. Therefore D, (G[p"]) is étale and it follows

that D (G) = lim,, D, (G[p"]) is a pro-finite étale strict O-module scheme.
The exact sequences

0 — Glp"] = Glp"'] = G[p" ]
now give exact sequences
D, (G[p" ™)) = D, (G[p" ") — DL (G[p"]) — 0. (A.3.6.1)

Localising, we may assume that D, (G[p"]) is a strict finite constant O-module
for all n > 0. Then the short exact sequences (A.3.6.1) combined with the fact
that deg(Dr(G[p"])) = Np” for all n > 0, show inductively that there exists
an isomorphism D (F[p"]) — O/ p"y such that the maps

D (G[p"*]) = D (G[p"])

correspond to the reduction maps

n+1 n

Therefore,
D,(G) = lim D, (G[p"]) — lim O/p" = Og

is a rank one O-local system on S and this shows that D, defines a contravari-
ant equivalence between the category of Lubin-Tate O-modules and rank one
O-local systems over S.
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For the statement regarding the quasi-inverse, we have
D.(¥) = cogm@g7str(g,Fs[p”])
= colim Hom{ (. Fs ")
= cogmms(as, Fs[p"] @0 £Y)
= collim Fs[p"] ®o0 LY
= Fg®o L.

A.3.7 Corollary. — Let S be a p-adic sheaf.
(i) If F/S is a Lubin—Tate O-module the natural homomorphism

Os — End$ (F)

is an isomorphism.
(ii) If F,F'/S are a pair of Lubin-Tate O-modules over S then Hom (F, F')
1s an O-local system over S and the evaluation homomorphism

F ®0 Hom§ (F,F') — F’

s an isomorphism.
(iii) The functor

M X CLo — My X M (F,X) — (F,F@OX)
s an equivalence of stacks.

Proof. — (i) For any rank one O-local system we have Og —» End{ (%) so
that the composition

Os — End{ (F) = End{ (D,(F))

is an isomorphism and therefore Og — EndS (F) is an isomorphism.
(i) We may assume that F' = F @0 Z. Then (i) combined with (1.2.8)
gives

# =5 Homg (F, F ®0 2).

Moreover, using this identification the evaluation homomorphism
F®0 % =F ®o Hom{ (F,F ®0 %) - F =F®0 &L

becomes the identity.
(iii) The functor in question is the product of the equivalences id 4, and
L+ D(£V) and is therefore an equivalence. O
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A.4. A principal ideal theorem

In this section we would like to prove a strengthening of an old principal
ideal theorem (see Tannaka [35]). We first state a special case for imaginary
quadratic fields (A.4.1) as it is possible to do so without having to make any
new definitions and it is the only case we need in main the text. We shall then
prove the general result (A.4.8) for arbitrary number fields K and explain how
it strengthens the result in [35].

The author would like to point out that while the result is new, our proof
is really just a refinement of Tannaka’s, essentially a combination of his proof,
some very old results in class field theory, and a result of one of his contempo-
raries (see Terada [36]). It is also interesting to point out that Tannaka was
motivated to prove his result by Deuring who had conjectured it, presumably
inspired during his work on CM elliptic curves.

A.4.1 Proposition. — Let K be an imaginary quadratic field, let K(f)/K be
the ray class field of conductor f, let g be an ideal divisible by | and let

l: Prin(lgr)nodf - K*:a—lI(a)

be a homomorphism such that l(a)-Ox = a C K and such that I(a) = 1 mod f.
Then I can be extended to a map

1dS) — K(7) :ars U(a)
such that l(a) - Ok = a- Oy and such that for all a,b € Id(ogi we have
l(ab) = I(a)oq(1(D)).

A.4.2. Let K be a number field with ring of integers Ok. Recall by a modulus
of K is meant a finite formal sum

F=> fo

over the places v of K such that f, € N for all v and such that f, € {0,1} for
v infinite and real and §, = 0 for v infinite and complex. If f and § are moduli
of K then their product ff’ is defined by (ff'), = f, + f»» for all finite places v
and (ff'), = max(fy,f,,) for all infinite primes v. We say § divides § if f, < f,
for all places v. If f, = 0 for all infinite v then we identify f with an ideal of
Ok in the usual way.

If a € K* we write a = 1 mod f to mean that v(a — 1) > §, for all finite
places v and such that a > 0 for all infinite real places v of K with f, # 0.
For a pair of fractional ideals a,b of K we write a = b mod | to mean that
ab~! = (a) with @ = 1 mod f.

For each modulus § there is a certain extension K(f)/K called the ray class
field of conductor f which is unramified at all finite places v of K with §, = 0.
This extension is characterised by the property that if g is any ideal of K
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divisible by (the finite part of) f and Id%) denotes the group of fractional
ideals prime to g then the map

1d\Y - GK(f)/K) : a — oq (A.4.2.1)
is surjective and its kernel is equal to Pringgr)nodf C Id%?), the sub-group gen-
erated by ideals a prime to (the finite part of) g with a = Ok mod f.

We now recall certain moduli defined for a finite abelian extension of number
fields L/K (see §1 of [36] for precise details). We write fi,/k, Dr/x and &,/
for conductor, different and genus ideal (‘Geschlechtermodul’) of the extension
L/K which are moduli for K, L. and K respectively and we have

fL/xk = DL/kOL/K-

The moduli f,/k, D1/ are not necessarily ideals however &,k is always
an ideal of Op. Finally, if L/K'/K is an intermediate extension we define
fL/k/k = Dr/x®r/x which is an integral ideal of K’. We note that fL K,
Bk, and fr, /g k are all invariant under G(L/K).

Finally, for what follows we will use exponential notation for the action of
Galois groups on elements or fractional ideals of the respective fields.

A.4.3 Theorem (Hasse’s Norm Theorem). — Let L/K be a finite cyclic
extension. Then Ny, (Ir) N K* = Ny, g (L*).

A.4.4 Theorem (Principal Genus Theorem). — Let L/K be a finite cyclic
extension with generator o € G(L/K) and let a be a fractional ideal of L. Then
Ny, /k(a) = Ok if and only if a = b= for some fractional ideal b of L.

Proof. — As G(L/K) is cyclic and generated by o we have

o on—1
{a€ldy :aa’---a :OL};>H1 i1

— (G(L/K),Idy) : a+ (¢ — aa® ---a”
1d{

)

and by Proposition 6, §13, Chapter V of [25] the group H!(G(L/K),Idy)
vanishes which is precisely the claim. O

A.4.5 Theorem (Terada’s Norm Theorem). — Let L/K be a finite cyclic
extension with generator o € G(L/K), let a € K and let m be an ideal of Or,.
Then the following are equivalent:

(1) NL/K(G‘) = 1 mod fL/Km
(ii) @ = b'~ mod &y xm for some b € L.

Proof. — This is Theorem 2 of [36]. O
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A.4.6. Now let L/K be the ray class field of conductor fL/k and let p1,...,p;
be prime ideals of K, unramified in L/K and such that

T

G(L/K) = Ploy)

i=1
where o; is the Frobenius element corresponding to p; (we can do this by
(A.4.2.1)). Also, for 1 < i < n let n; be the order of o; and let K; C L be the
sub-extension fixed by the sub-group of G(L/K) generated by {o;};-;. We
note that G(K;/K) — (o;).

A.4.7 Theorem (Tannaka). — For 1 < i <r let a; be a fractional ideal of
K; such that p; = ail_(” mod fr,/k,/k- Then aj---a, = Op mod &y, k.

Proof. — This is Theorem 3 of [35]. O

A.4.8 Theorem. — Let K be a number field, let L/K be the ray class field of
conductor fr,jk, let g be an ideal divisible by (the finite part of) fL/x and let

l: Prin(g)

Lmod i K* :awl(a)

be a homomorphism such that l(a) - Ox = a C K and such that l(a) = 1 mod
fLy- Then | can be extended to a map

l:Ing)( —L* rarI(a)
such that:
(i) U(a)-Op =a- Oy,
ii) {(a) = 1 mod &, /i, an
(ii) (a) d &y, d
(iii) for all a,b € Idgi we have

I(ab) = I(a)oq(L(b)).

Proof. — For each 1 < < r let us make the following constructions. As p}"* €
(9)

1 mod fL/K
so that I(p;") € Nk, /k(Ik;). By Hasse’s Norm Theorem, there is some m; € K;
with N, /x(m) = I(p;"). By construction we have

Prin we have [(p;"*) = 1 mod i,/ and a fortiori I(p;) = 1 mod fk, /x

Nk, /i (pi(mi) 1) = pjp; ™ = Ok
so that, by the Principal Genus Theorem, we can find an ideal b; of K; with
pi(m;) =10,
We note that

fL/K; /K = Q5KZ~/K(fL/Kf{<3/K)
so that

Ny, /x(m:) = I(pf) = 1 mod fL/k = 1 mod fKi/K(fL/Kf}_(il/K)'
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We now apply Terada’s Norm Theorem (with m = fi, /Kf;{l /K) to find «; € K;

with a; = 1 mod fy, /k, /x and m; = Otzﬂl-l_"" and

Finally, we set a; = (3;)b; to get

170’1' 170’1'

pi = (), and so  p; =a; ”" mod f,/k, /K-

The ideals a; for 1 < ¢ < r satisfy the conditions of Tannaka’s Theorem and
so we find an A € L with A = 1 mod &, /i with

H a; = (A)
1<i<m
Finally, we set
0Q; = oAl

and note that ©; - O, = p;.
We now go about extending the map [, following rather closely the method
of §1 of [35]. Each a € Id(ogl)( can be written uniquely as a product of ideals

a=-(a)- pr (A.4.8.2)
i=1
with y(a) € Pringgr)nod o and 0 < z; < n;. Before we continue let us note the
following multiplicative relations for the ideals y(a):
(i) If b € Pringgr)nod o then
~v(ab) = ~v(a)y(b). (A.4.8.3)
(ii) If b =p; and z; # nj — 1 then
¥(pj) =0k and ~(ap;) =~y(a). (A.4.8.4)
(iii) If b = p; and z; = n; — 1 then
(ap;) = (a)y(p;’). (A.4.8.5)

Still following §1 of [35] we now define [(a) by

i—1

l(a) =1(~(a)) H @;}’z’(mi) _ l(’y(a))AUC‘_l ﬁ a;+gi+...+0fz

i=1 i=1

where
Z; i—1
j x
wi(z) = | Y op, | - T owr-
j=1 k=1

It is clear that [(a) - Op, = a- Ok(q) and that this map does indeed extend the
given map [. Moreover, by construction we have the relations

A =1 mod @L/K l(a) =1 mod fL/K Qy = 1 mod fL/Ki/Kv
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so that as &y, /k divides both fr /k and fi /k,/k, and as &y, k, fr/x and f/x, /K
are invariant under the action of G(L/K), we get the relation

l(Cl) =1 mod ®L/K

All that remains to be shown is that [(ab) = [(a)o,(I(b)) for a,b € Id(ogi.

Solet b e Idgl)( be another fractional ideal, and also write

b) - ﬁpi“ and ab = v(ab) - ﬁpfz
i—1 i=1

where v(b),~(ab) € Prlnggr)nodf LK

1 < ¢ < 7 by the equality

and 0 < y;,2; < n;. Define §; € {0,1} for

Zi = X; + Yi — 51’0,

Then one finds (see equation (9) of [35])

z(a)lczaaél)(b)) _ (e 3 7(b)) HNK k(). (A.4.8.6)

It remains to check that the right hand side of (A.4.8.6) is equal to one for
(9)

1 mod fp,/x

P1,...,Pn so that by induction, it is enough to check that i(ab) = (a)oq(I())

when b € Pringg) di s OF when b = p; for 1 < j <r. Ifb ¢ Pringg) d5
mod JL/K mod f,/k

then ¢; = 0 for 1 <4 <r and by (A.4.8.3) we have vy(a)y(b) = v(ab) so that

[(y(@)i(v(0)) 1 -
Ty LN =1

If b =p; and z; # n; — 1 then 6; = 0 for 1 < i < r and by (A.4.8.4) we
have v(p;) = Ok and ~y(ap;) = v(a) so that

[(v(a)l(v(b)) T L
WHNKJI{(%)& =1

Finally, if b = p; and z; = n; — 1 then §; = 0, unless ¢ = j in which case
0; = 1, so that

all ideals b. The group Idgll is generated (as a monoid!) by Prin and

HNK /K (i)’ = N, k() =1y (P?]))

by (A.4.8.1). By (A.4.8.5) we have y(ap;) = 'y(a)’y(p?j) so that

[(7(a))l(~(b)) T L nj\ vy _
WEN&/K(%)& = 1(y(p;") (v (p;7)) = 1

Therefore, for all a,b € Idgl)< we have [(ab) = l(a)oq(l(b)). O]
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A.4.9 Remark. — Let us now explain how (A.4.8) strengthens the main
result of [35]. The result in question is Theorem 1 of [35] and it states (we
continue to use the notation of (A.4.8))

Theorem (Tannaka’s Principal Ideal Theorem). — There exist numbers
©(a) € L, indezed by ideals a € Ido,, such that the following hold:

(i) @(Cl) . OL =a- OL,
(ii) ©(a) = 1 mod &y, /i, and

(iii
©(a)aa(O(b)) _ x
——————= € Og.
O(ab) K
It is now an easy to replace (iii) of Tannaka’s Principal Ideal Theorem with
O@r(©(b) _
©(ab) '
Consider the sub-group
Prin /) g,

As IdgL/ ) is free abelian (generated by the prime ideals prime to fy, /K) and
every sub-group of a free abelian group is itself free abelian, one can define a

multiplicative map

(fr/x)
1 mod fL/K

such that I(a) - Ok = a and such that /(a) = 1 mod f k. Applying (A.4.8) to
the map [ we find a map

Prin —K* :a—l(a)

(.

1)) L) e i(a)

K
such that I(a) - O, = a- O, I(a) = 1 mod &, /i and such that
I(a)aa(i(b))

=1
[(ab)
Therefore, putting {(a) = ©(a) we can replace (iii) of Tannaka’s Principal
Ideal Theorem with
©(a)aa(O(b))

o) -
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