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The tears stream down my cheeks from my unblinking eyes. What makes me

weep so? From time to time. There is nothing saddening here. Perhaps it is

liquefied brain.
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ABSTRACT

This thesis examines the relationship between elliptic curves with complex

multiplication and Lambda structures. Our main result is to show that the

moduli stack of elliptic curves with complex multiplication, and the universal

elliptic curve with complex multiplication over it, both admit Lambda struc-

tures and that the structure morphism is a Lambda morphism. This implies

that elliptic curves with complex multiplication can be canonically lifted to

the Witt vectors of the base (these are big and global Witt vectors). We

also show that elliptic curves with complex multiplication of Shimura type are

precisely those admitting Lambda structures. Along the way, we present a

detailed study of families of elliptic curves with complex multiplication over

arbitrary bases, give new derivations of the local reciprocity map and the

global reciprocity map associated to an imaginary quadratic field, construct

a new flat, affine and pro-smooth rigidification of the moduli stack of elliptic

curves with complex multiplication and exhibit a relationship between perfect

Lambda schemes and periods, both p-adic and analytic.
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INTRODUCTION

This thesis began as an attempt to answer the question:

Q: What do elliptic curves with complex multiplication and

Λ-structures have to do with one another?

The reader is probably somewhat familiar with first term, less likely so with

the second. Even if he or she is familiar with both, why such a question might

have an answer worth finding is probably not clear at all. So we will begin by

explaining how both of these terms are related to a third: class field theory.

Let us remind the reader of the relationship between elliptic curves with

complex multiplication and class field theory. For all that follows we fix an

imaginary quadratic field K, with ring of integers OK. If L/K is a finite

extension, an elliptic curve with complex multiplication by OK over L, here on

called a CM elliptic curve over L, is an elliptic curve E/L with the property

that its ring of endomorphisms EndL(E) is isomorphic to OK. For a general

elliptic curve E/L, the Tate module T(E) = limn E[n](Lsep) is a rank two Ẑ-

module equipped with an action of G(Lsep/L). However, when E/L is a CM

elliptic curve, this rank two Ẑ-module becomes a rank one Ẑ ⊗Z OK-module

and so the action of G(Lsep/L) is defined by a character

ρE/L : G(Lab/L) = G(Lsep/L)ab → (Ẑ⊗Z OK)×.

In particular, it follows that extensions of L generated by torsion points of E

are abelian over L. It is then known that if one can find a CM elliptic curve

E/K defined over K itself, the resulting character

ρE/K : G(Kab/K)→ (Ẑ⊗Z OK)×
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is injective from which it follows that every abelian extension of K is realised

as a sub-extension of one generated by the torsion points of E — thus realising

the class field theory of K.

In general there do not exist CM elliptic curves defined over K. The smallest

field of definition of a CM elliptic curve is the Hilbert class field H/K (the

maximal abelian, everywhere unramified extension of K). If E/H is such a

curve then the extensions of H generated by its torsion points are abelian over

H, but they are not necessarily abelian over K. If one is still interested in the

class field theory of K, this problem can be overcome by considering certain

O×K = AutH(E) invariant maps

w : E→ P1
H,

called Weber functions. The extensions of K generated by the co-ordinates of

the images of torsion points of E under a fixed Weber function are abelian,

and every abelian extension of K is a sub-extension of one of these — again

realising the class field theory of K. Therefore, if one is interested in the class

field theory of K one need go no further than CM elliptic curves.

Now let us explain the relationship between Λ-structures and class field

theory. First, a Λ-structure on a flat Spec(OK)-scheme X (we will say more

about the non-flat case later) is nothing more than a commuting family endo-

morphisms

ψa : X→ X

indexed by the non-zero ideals a of OK such that for any two ideals a, b we

have ψa ◦ ψb = ψab and with the property that for each prime ideal p, the

restriction of ψp to the fibre Xp := X ×Spec(OK) Spec(OK/p) is the Np-power

Frobenius endomorphism

FrNp : Xp → Xp.

We call the endomorphisms ψa (for all a) a commuting family of Frobenius lifts.

The resulting notion of a Λ-morphism of Λ-schemes f : X→ Y being one that

commutes with the Frobenius lifts. The OK-scheme Spec(OK) has a unique Λ-

structure with Frobenius lifts all equal to the identity and if L/K is an abelian

extension with ring of integers OL then (ignoring the ramified primes) the

finite locally free OK-scheme Spec(OL) admits a unique Λ-structure as well.

More generally, if S is any finite locally free Spec(OK)-scheme equipped with a

Λ-structure then the extension of K generated by the co-ordinates of S (in any

affine embedding) is an abelian extension of K. The link between Λ-structures
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and class field theory appears. These observations also have the following

implication. If X a Λ-scheme over Spec(OK) and 0X : Spec(OK) → X a Λ-

morphism then (under certain hypotheses) for each ideal a the scheme X[a] :=

ψa∗(0X) ⊂ X is a finite locally free Λ-scheme over Spec(OK). Therefore, the

extension of K generated by the coordinates of X[a] will be abelian.

With this in hand, let us return to CM elliptic curves. It now turns out that

if E/K is a CM elliptic curve, writing E → Spec(OK) for the Néron model of

E/K, the flat OK-scheme E admits a unique Λ-structure (ignoring the primes

of bad reduction for E/K) and the morphism

0E : Spec(OK)→ E

is a Λ-morphism. Moreover, for each integer n ≥ 0, viewing (n) ⊂ OK as an

ideal, we have that ψ(n)∗(0E ) = E [n] is the n-torsion of E which is now a finite

locally free Λ-scheme. It is now also natural to ask whether in general there

exist CM elliptic curves E/H defined over the Hilbert class field whose Néron

models admit Λ-structures and this turns out to be a subtle question.

At this point, we should note that everything we have said so far is the work

of others. Indeed, the theory of complex multiplication and its relationship

with class field theory is classical and has a very long history and to give a list

of names would be very difficult. The theory of Λ-schemes and Λ-structures

is due to Borger ([4], [5]), and the relationship between Λ-structures and

class field theory is due to Borger-de Smit ([7], [8]) and indeed it was my

advisor James Borger who originally posed the question at the beginning of

this introduction and the more specific one asking for the existence of CM

elliptic curves E/H over the Hilbert class field with Λ-structures. This second

question we can now answer:

0.0.1 Theorem. — (i) There always exists a CM elliptic curve E/H over

the Hilbert class field whose Néron model admits a Λ-structure.

(ii) The Néron model of a CM elliptic curve E/H admits a Λ-structure if and

only if the extension of K generated by its torsion is abelian over K.

CM elliptic curves (over arbitrary abelian extensions of K) with the property

that the extensions generated by their torsion is abelian over K were introduced

originally by Shimura and are now called CM elliptic curves of Shimura type.

Indeed, it is using results of Shimura that, after proving (ii) we are able to

prove (i). It worth pointing out that CM elliptic curves of Shimura type have

been studied by several authors, with particular reference to their L-functions
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and the Birch-Swinnerton-Dyer Conjecture. Indeed, the papers of Coates-

Wiles [13] and Rubin [30] concern curves of this type.

Let us now also answer the question posed in the first paragraph:

Q: What do elliptic curves with complex multiplication and

Λ-structures have to do with one another?

A: Everything!

The central theorem we aim to prove is the following and explains our

answer to the question above.

0.0.2 Theorem. — Let MCM denote the moduli stack of CM elliptic curves

and let E → MCM denote the universal CM elliptic curve. Then both E

and MCM admit canonical Λ-structures and the morphism E → MCM is a

Λ-morphism.

The reader will probably have noticed that we have not even defined what it

means for a general (non-flat) scheme, let alone a stack, to have a Λ-structure

and in fact we do not propose to define Λ-structures on stacks in this thesis (not

because it isn’t possible to do so, only because doing so would lead us into the

nightmarish realm of 2-monads on 2-categories). In any case, the definition

of Λ-structure we have given for a flat OK-scheme admits an obvious naive

generalisation — that of a commuting family of Frobenius lifts — though it is

not the correct one. Before we explain the correct definition, and the actual

meaning of (0.0.2), let us describe the naive Λ-structure on MCM.

If S is an OK-scheme then MCM(S) is the category of CM elliptic curves

E over S. In particular, the objects E/S ∈ MCM(S) are OK-modules and for

each non-zero ideal a ⊂ OK it is possible to make sense of the OK-module

E ⊗OK
a−1 which is again a CM elliptic curve over S. This defines for each

ideal a an endofunctor

−⊗OK
a−1 : MCM →MCM : E 7→ E⊗OK

a−1,

and for different ideals a these endo-functors all ‘commute’ in the obvious

sense. More important is the following fact: if p ⊂ OK is prime and S is

an OK-scheme of characteristic p, i.e. the morphism S → Spec(OK) factors

through Spec(OK/p), then for all CM elliptic curves E/S there is a canonical

isomorphism

E⊗OK
p−1 ∼−→ FrNp∗(E)
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between E ⊗OK
p−1 and the pull-back of E along the Np-power Frobenius

FrNp : S→ S (this construction in its simplest form is due to Serre). In other

words, the functor −⊗OK
p−1 is a lift of the Np-power Frobenius and we have

defined a naive Λ-structure on MCM.

However, as we have already noted, the naive notion of a Λ-structure as a

commuting family of Frobenius lifts is not the correct one. Let us now at least

say enough about the non-naive notion of Λ-structure so that we may explain

to the reader some of the actual meaning of (0.0.2).

There is a functor

W∗ : SchOK
→ SchOK

: X 7→W∗(X)

sending an OK-scheme X to its scheme W∗(X) of (big OK-typical) Witt vectors

(technically speaking W∗(X) is actually an ind-scheme, but for the purposes

of this introduction we will ignore this fact). We will not say much here about

the geometry of the Witt vectors W∗(X) themselves, other than to remark

that they have many miraculous properties, chief among which is that if X is

an OK-scheme of characteristic p for some prime of OK, then (very roughly

speaking) the Witt vectors W∗(X) of X have characteristic 0. The properties of

the Witt vectors W∗(X) which are of interest to us presently are the following:

(i) W∗(X) possesses a family of commuting Frobenius lifts

ψa : W∗(X)→W∗(X)

indexed by the ideals a of OK (i.e. a naive Λ-structure),

(ii) there is a morphism g(1) : X→W∗(X), and

(iii) for all flat Λ-schemes S (the definition of which we have given) and all

morphisms X → S there is a unique morphism W∗(X) → S compatible

with the Frobenius lifts on W∗(X) and S such that the following diagram

commutes

W∗(X)

��

X

g(1)
<<

// S.

(0.0.2.1)

If we now let S be an arbitrary OK-scheme, the diagram (0.0.2.1) can be

taken as the definition of a Λ-structure on S: a Λ-structure on an OK-scheme

S is, for each morphism X → S, a canonical lifting W∗(X) → S of that mor-

phism making the diagram (0.0.2.1) commute (together with certain iterated

compatibilities which we will not give here). It is not unreasonable to make
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the comparison between the construction of Serre-Tate of the canonical lift to

the (p-typical) Witt vectors of ordinary elliptic curve over a finite field.

We can now give the reader a better sense of the meaning of (0.0.2). If

S is an OK-scheme and E/S is a CM elliptic curve, i.e. if one is given a

morphism S
E→ MCM, then there is a functorially defined CM elliptic curve

W∗
CM(E) over the (big OK-typical) Witt vectors W∗(S) of S, i.e. there is

a morphism W∗(S)
W∗CM(E)
−→ MCM, together with a canonical isomorphism

g∗(1)(W
∗
CM(E))

∼−→ E. This to say we have a ‘commutative’ diagram:

W∗(S)

W∗CM(E)

��

S

g(1)
<<

E
// MCM

and this is what we mean when we say that MCM admits a Λ-structure. It

follows that CM elliptic curves can be lifted canonically to the Witt vectors

of the base. We would like to point out that the base S here is arbitrary.

We shall not anything more about (0.0.2) here, nor the Λ-structure on E .

However, what (0.0.2) does do is equip E →MCM with an incredible amount of

very rich structure — structure which is of interest in and of itself in the world

of Λ-geometry, but which can also be exploited to prove new results in both

the theory of CM elliptic curves and the arithmetic of imaginary quadratic

fields. The following result is an example of this phenomenon:

0.0.3 Theorem. — Let K(f) be the ray class field of conductor f and let

E/K(f) be a CM elliptic curve of Shimura type. If the f-torsion E[f] is con-

stant then E/K(f) admits a global minimal model away from f. In particular,

if f = OK so that K(f) = H then every CM elliptic curve E/H of Shimura

admits a global minimal model.

In the special case when disc(K/Q) is prime and f = OK this result was

proven by Gross (Corollary 4.4 [22]),

We now give an overview of the chapters:

Chapter 1: We recall the local and global reciprocity maps, define Lubin–

Tate modules and study their moduli stack MLT. We show that MLT admits

a certain torsor structure and using this explain how to derive the local reci-

procity map directly from MLT using only its formal properties. We then give
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an overview of a certain special case of global reciprocity, and present some

basic constructions regarding local systems of rank one.

Chapter 2: We undertake a quite detailed study of CM elliptic curves over

arbitrary bases and their moduli stack MCM. We show that MCM admits a

certain torsor structure analogous to that of MLT. We also give CM analogues

of some classical theorems for general elliptic curves and, in a similar vein to

Lubin-Tate modules, we explain how to derive a certain global reciprocity map

directly from MCM using only its formal properties. Using this we classify all

CM elliptic curves over fields (of arbitrary characteristic) in terms of their

associated Galois representations. Finally, we consider the moduli stacks with

level structure and consider their representability in the fine and coarse setting.

Chapter 3: We give a short overview of the general theory of Λ-schemes,

Witt vectors and arithmetic jets. We then prove a handful of (slightly techni-

cal) new results for later use.

Chapter 4: Here we prove the main theorem regarding lifting CM elliptic

curves over arbitrary bases to their big OK-typical Witt vectors. We then

prove that a CM elliptic curve is of Shimura type if and only if its Néron

model admits a Λ-structure. We then consider the minimal models of CM

elliptic curves of Shimura type and prove their global existence under certain

hypotheses. Next we consider quotients of CM elliptic curves by their groups

of automorphisms and prove that (suitable reinterpreted) they always exist

and we show that the quotient of the universal CM elliptic curve descends to

the coarse space of the moduli stack of CM elliptic curves. We show how this

descended curve admits a canonical Λ-structure and allows one to construct

the ray class fields of K in a choice free, integral and coherent manner and we

also show show that this descended curve is nothing but a (global) projective

line. We then construct a flat, affine and pro-smooth cover of the moduli stack

of CM elliptic curves, which comes equipped with a Λ-structure compatible

with that on MCM. Finally, we exhibit an interesting relationship between

certain deformations of CM elliptic curves with Λ-structures and their Tate

modules.

Appendix: We give an abstract and formal definition of smooth formal

groups, we consider the general properties of ‘Serre’s tensor product’ and we

give a short overview of Faltings’ generalised Cartier duality, needed to prove

certain results in Chapter 1. Finally, we prove a strengthening of an old

principal ideal theorem for arbitrary number fields.





FOUNDATIONS, CONVENTIONS AND

TERMINOLOGY

0.1. Sheaves

0.1.1. In order to have a nice common ground for all the objects we would

like to work with, we shall here define the basic categories of (pre)sheaves

in which all objects we consider will live. We have decided to not to bother

ourselves with set theoretic issues of ‘size’ (which really only come up when

one tries to sheafify wild presheaves for large topologies [37] — something we

will have no need to do), however the concerned reader may add the word

‘universe’ whenever he or she sees fit.

Let Aff denote the category of affine schemes and PSh the category of

presheaves of sets on Aff, i.e. the category of functors

X : Aff◦ → Set.

We write Sch for the category of schemes and as usual we embed Aff and Sch

in PSh by sending a scheme to the functor it represents.

We shall be working with sheaves for the fpqc and étale topologies on Aff

which we now recall. The covers of an affine scheme S for the fpqc (resp.

étale) topology are given by flat (resp. étale) families (Si → S)i∈I indexed by

a finite set I which are covers in the usual sense. A sheaf for the fpqc topology

will just be called a sheaf and the category of such sheaves will be denoted

Sh ⊂ PSh. A sheaf for the étale topology will be called an ét-sheaf and we

write Shét ⊂ PSh for the corresponding category. We have the inclusions

Aff ⊂ Sch ⊂ Sh ⊂ Shét ⊂ PSh.

0.1.2. If f : S′ → S is a morphism of presheaves and X→ S is an S-presheaf

then we denote the fibre product by X×S S′, f∗(X), or when f is clear by XS′ .

Viewed as a functor f∗ : PShS → PShS′ , the right adjoint to f∗ is denoted

by f∗ and the left adjoint by f!. Recall that if X′ → S′ is an S′-presheaf then

f!(X
′) is the S-presheaf X′ → S′

f→ S and f∗ is the S-presheaf defined by

Spec(A) 7→ HomS′(Spec(A), f∗(X
′)) = HomS′(f

∗(Spec(A)),X′).
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The functor f! will be used rarely, and only in the case when f is an isomor-

phism, in which case it is isomorphic to g∗ where g = f−1.

0.1.3 Example. — An important family of sheaves for the fpqc topology are

the ind-affine schemes, the category of which we denote by IndAff. Recall an

ind-affine scheme X is a pre-sheaf X which can be written as filtered a col-

imit X = colimi Spec(Ai) of affine schemes (it follows automatically from this

that it is a sheaf). One of the main examples we work with is the follow-

ing: if S = Spec(A) is an affine scheme and I is an ideal we write SpfI(A)

(or just Spf(A) when I is clear from the context) for the ind-affine scheme

colimn Spec(A/In+1). If X→ Spec(A) is a presheaf over Spec(A) we say that

X is I-adic or that I is locally nilpotent on X if the morphism X → Spec(A)

factors through Spf(A) ⊂ Spec(A). If Spec(B)→ Spec(A) is an affine Spec(A)-

scheme then Spec(B) is I-adic if and only if the ideal IB ⊂ B is nilpotent.

0.1.4. If A is a set and S is an ét-sheaf then we write

AS =
∐
a∈A

S

for the constant ét-sheaf over S associated to A. If S is actually a sheaf, so is

AS. When S is a fixed base (usually the spectrum of some Dedekind domain)

we will drop the sub-script and just write A.

0.1.5. By a cover of a sheaf S (resp. ét-sheaf) we just mean a family (Si →
S)i∈I of morphisms of sheaves (resp. ét-sheaves) such that

∐
i∈I Si → S is

an epimorphism. When referring to properties or making claims which are

compatible with base change we will use the word local to mean after base

change along a cover.

0.1.6. We say that a morphism of pre-sheaves f : X→ S is representable, or

that X is representable over S, if for each affine scheme S′ → S the pre-sheaf

X×S S′ is (representable by) a scheme. In general, for a morphism of sheaves

(or ét-sheaves) to be representable is not local. However, it is the case for

f which are representable by open immersions, or when f is representable

by affine morphisms. In both of these cases we will just say that f is open

immersion, or that f is affine. Similarly for any other condition of f that

includes affine in its definition: finite, finite locally free, a closed immersion

and so on.

0.1.7 Proposition. — If f : X→ Y is a finite locally free étale morphism of

ét-sheaves then the inclusion of the image f(X) → Y in Shét is an open and

closed immersion, the inclusion of the complement Y − f(X) → Y is also an

open and closed immersion and Y q (Y − f(X)) = Y. Moreover, if X and Y

are sheaves, so are the ét-sheaves f(X) and Y − f(X).
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The following result will be used often (it follows from Théorème 2.1 of

Exposé VIII in [3]) cited as ‘by descent’:

0.1.8 Proposition. — Let X → S be a morphism of (ét-)sheaves and let

S′ → S be an epimorphism of (ét-)sheaves. Then X → S is affine if and only

if X×S S′ → S′ is affine.

0.1.9. We now say a little about what we mean by a quasi-coherent OS-

module on a sheaf S. We have the relatively representable sheaf of rings

OS := A1
S = Spec(Z[T])×Spec(Z) S (0.1.9.1)

and the abelian category of OS-modules Mod(OS). For any map of sheaves

f : S′ → S, as OS ×S S′ = OS′ , we obtain the functor

f∗ : Mod(OS)→ Mod(OS′) : M 7→M ×S S′ = MS′ .

Note that this functor is exact for any map f .

The category of quasi-coherent sheaves QCoh(OS) ⊂ Mod(OS) is the full

sub-category of OS-modules M such that there exists a cover (Si → S)i∈I and

for each i ∈ I an exact sequence

OMi
Si
→ ONi

Si
→MSi → 0

where Mi and Ni are sets. When S is a scheme this category coincides with

the usual category of quasi-coherent sheaves over S and the functor f∗ defined

above has its usual meaning. However, the inclusion QCoh(OS) ⊂ Mod(OS)

is not exact (to be precise it does not preserve kernels). This explains why

f∗ : Mod(OS) → Mod(OS′) is exact for any f while the same is not true for

QCoh(OS)→ QCoh(OS).

We shall be almost exclusively concerned with locally free finite rank OS-

modules — or what is the same vector bundles — the equivalence between

which is a tautology with our definition OS := A1
S.

0.2. Group actions

0.2.1. Let A → B be a homomorphism of rings and let G be some group

of A-automorphisms of B. The example to have in mind here is a Galois

extension of fields K→ L and G = G(L/K).

Given σ ∈ G, in order to avoid the cumbersome notation Spec(σ) : Spec(B)→
Spec(B), we will just write σ : Spec(B) → Spec(B). However, associating an

affine scheme to a ring is contravariant, so that this notation becomes confus-

ing when considering compositions σ ◦ τ of elements in G. In order to avoid

problems here, we make the convention that the product of two elements of

σ, τ ∈ G, will be denoted by στ so that στ ∈ G is the automorphism

B
τ→ B

σ→ B.
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We will only use the composition symbol ◦ when viewing σ and τ as auto-

morphisms of Spec(B) so that σ ◦ τ will denote the Spec(A)-automorphism of

Spec(B)

Spec(B)
τ−→ Spec(B)

σ−→ Spec(B).

With this convention the following three symbols denote the same Spec(A)-

automorphism of Spec(B)

σ ◦ τ = Spec(τσ) = τσ : Spec(B)→ Spec(B).

0.3. Stacks

0.3.1. Let C be a site (the examples we have in mind are C = Aff, IndAff,

Sh). A fibred category over C is a category X equipped with a functor

p : X → C

together with, for each morphism f : S′ → S of C, a pull-back functor

f∗ : X (S) → X (S′) where X (S) denotes the fibre of p over S (objects of

X mapping to S and morphisms those mapping to idS) together with various

natural transformations between their compositions satisfying certain identi-

ties. There is also the notion of a morphism of fibred categories f : X ′ →X

being a functor (strictly) compatible with the functors from X ′ and X to C

together with certain compatibility relations between the pull-back functors

of X ′ and X . Finally, a stack over C is a fibred category whose objects and

morphisms satisfy descent with respect to the topology on C.

To keep things (relatively) concrete we shall say the following for C = Aff

with the fpqc topology — it will also apply when working with other sites C.

The main point we want to make is that when defining stacks X → Aff we

shall often skip the details and define only the fibres X (S) for S ∈ Aff and the

pull-back functors f∗ : X (S) → X (S′) for f : S′ → S in Aff (and sometimes

not even these when they are clear). Similarly a morphism of stacks will be

defined only on the fibres, the various compatibilities which must be satisfied

will be obvious from the context.

0.3.2. To each sheaf X there is an associated stack Aff/X → Aff and for each

morphism f : X→ Y a morphism

Aff/X → Aff/Y : (S→ X) 7→ (S→ X
f→ Y).

Moreover, every morphism of stacks

Aff/X → Aff/Y

is uniquely isomorphic to one of this form. In other words, when considering

sheaves as the more general objects stacks, via X 7→ Aff/S, we do not lose or

gain anything especially important and so when considering a sheaf as a stack

we shall continue to denote it by X.
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0.3.3. Finally, if X → Aff is a stack and S ∈ Aff we write X (S)/ ∼ for

the set of isomorphism classes of objects of X (S). The pull-back maps f∗ :

X (S) → X (S′) for f : S′ → S define maps X (S)/ ∼→ X (S′)/ ∼ and this

defines a (separated) pre-sheaf

Aff◦ → Set : S 7→X (S)/ ∼

whose sheafification C(X ) = X (which will be denoted by the print form of

the cursive letter denoting the stack) is called the coarse sheaf associated to

X . There is an induced morphism cX : X → X and for each sheaf Y and

each morphism f : X → Y there is a unique morphism f ′ : X→ Y such that

f ′ ◦ cX = f .

0.4. Dedekind domains

Here we fix some general notation for Dedekind domains and various related

objects.

0.4.1. Let O be a Dedekind domain with field of fractions K and finite residue

fields. An integral ideal of O is any non-zero ideal and a prime ideal will mean

a non-trivial prime ideal. We write IdO (resp. PrinO) for the monoid of

integral (resp. and principal) ideals of O and IdK (resp. PrinK) for the group

of fractional (resp. principal) ideals of O. If a, b ∈ IdO we write (a, b) = a + b

so that a and b are relatively prime if and only if (a, b) = O. We write CLO

for the class group of O, i.e. the group of isomorphism classes of rank one

projective O-modules.

Let f be an integral ideal. We write Id
(f)
O ⊂ IdO (resp. Id

(f)
K ⊂ IdK) for the

sub-monoid (resp. sub-group generated) by the prime ideals prime to f. If

a ∈ K× then we say a = 1 mod f to mean that the ideal (a− 1) can be written

as fab−1 where a, b ⊂ O are ideals (if a = 1 we allow a = (0)) with b 6= (0)

and (b, f) = O. If f|g is another ideal then we write Prin
(g)
1 mod f to denote the

group of principal fractional ideals a = (a) prime to g with a = 1 mod f.

We write Nf for the cardinality of O/f and if f = p is prime we write

Fp = O/p. If A is an Fp-algebra then we write FrNp : A→ A for the Np-power

Frobenius endomorphism.

We write O×,f for the kernel of the homomorphism O× → (O/f)× and we

say that f separates units if this homomorphism is injective (this is not often

the case, but will be used constantly in the text).

We write O[f−1] for the sub-O-algebra of K generated by the elements of

f−1 ⊂ K. If X → Spec(O) is any Spec(O)-sheaf then we write X[f−1] =

X ×Spec(O) Spec(O[f−1]). We say that f is invertible on X if X[f−1] = X. If

p is a prime ideal we say that X has characteristic p if the structure map

X→ Spec(O) factors through Spec(Fp)→ Spec(O).
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If p is a prime we write

Spfp(O) = colim
n≥0

Spec(O/pn+1) ⊂ Spec(O).

We say that X is p-adic, or that p is nilpotent on S, if the structure morphism

X → Spec(O) factors through Spfp(O) ⊂ Spec(O). For an affine Spec(O)-

scheme Spec(A) to be p-adic is equivalent to the ideal pA being nilpotent.



CHAPTER 1

LOCAL AND GLOBAL RECIPROCITY

In §§1.1 and 1.3 of this chapter we recall the local and global reciprocity

maps of class field theory. In §1.2 we define Lubin–Tate O-modules (in fami-

lies) for a non-archimedian local field K with ring of integers O and show that

the moduli stack MLT of Lubin–Tate O-modules is a torsor under the stack

C L O of rank one O-local systems (1.2.13). We show how using this structure

one can derive the local reciprocity map directly from the stack MLT using

only the formal properties of Lubin–Tate O-modules (1.2.20). The construc-

tion we give is an analogue, for non-archimedian local fields, of the derivation

of the global reciprocity map for imaginary quadratic fields using CM elliptic

curves (which we address in Chapter 2). In §1.4 we recall how, for global fields

K equipped with a certain special place∞ and associated ring of integers OK,

the reciprocity map associated to the maximal abelian extension of K which is

totally split at ∞ can be reinterpreted in terms of certain class groups associ-

ated to OK (such pairs (K,∞) were first considered by Drinfel’d [18]). Finally,

in §1.5 we define and give the basic properties of rank one OK-local systems,

their level-f structures and moduli for use in the later chapters.

The only new results (or perhaps observations) in this chapter are the C L O-

torsor structure on MLT (which in any case we prove using results of Faltings)

and the derivation of the local reciprocity map directly from MLT.

1.1. The local reciprocity map

The purpose of this section is to recall the basic properties of local fields

and the local reciprocity map. Everything here is contained in Chapters I and

VI of [1]).

1.1.1. Let K be a local field. There are two cases and for each we fix the

following notation:

(i) K is archimedian and is isomorphic to R or C. We write | − |K for the

usual absolute value if K
∼−→ R and the square of the usual absolute

value if K
∼−→ C.
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(ii) K is non-archimedian and is the field of fractions of a discrete valuation

ring O ⊂ K with maximal ideal p and finite residue field Fp. We equip

it with the absolute value |a|K = Np−vp(a) where a ·O = pvp(a) ⊂ K).

We also fix maximal abelian and separable extensions K ⊂ Kab ⊂ Ksep. If K

is non-archimedian these extensions are not complete but from the point of

view of Galois theory nothing is lost.

1.1.2. Let K be a non-archimedian local field and let K ⊂ L ⊂ Ksep be a (not

necessarily finite) Galois extension of K. Write OL ⊂ L for the ring of integers

of L, pL ⊂ K for its unique maximal ideal and FpL = OL/pL for its residue

field. The reduction homomorphism G(L/K) → G(FpL/Fp) is surjective and

is bijective whenever L/K is unramified. In this case we write σL/K ∈ G(L/K)

for the unique element lifting the Np-power Frobenius automorphism of FpL .

We denote by K ⊂ Kur ⊂ Ksep the maximal unramified extension of K. The

map

Ẑ→ G(Kur/K) : n 7→ σnKur/K

is a continuous isomorphism whose inverse is denoted by vK : G(Kur/K)→ Ẑ.

If L/Kur is any extension we also write vK : G(L/K) → Ẑ for the map σ 7→
vK(σ|Kur) and define W(L/K) := v−1

K (Z) ⊂ G(L/K) (this is the ‘Weil group’).

1.1.3 Theorem. — There is a unique isomorphism

K× →W(Kab/K) : a 7→ (a,Kab/K) (1.1.3.1)

such that

(i) for all finite extensions K ⊂ L ⊂ Kab , the kernel of the composition

a 7→ (a,Kab/K)|L is NL/K(L×) and the induced map

K×/NL/K(L×)→ G(L/K)

is an isomorphism, and

(ii) the diagram

K×

vp

��

(−,Kab/K)
// W(Kab/K)

��

Z
n 7→σn

Kur/K
// W(Kur/K)

commutes.

Proof. — Uniqueness and existence are Proposition 6, §2.8 of Chapter VI and

Theorem 2, §2.2 Chapter VI of [1] respectively.
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1.1.4. We list the following further property of the reciprocity homomor-

phism (see §2 Chapter VI of [1]): If K′/K is any finite separable extension and

K′ab/K′ a maximal abelian extension of K′, then the diagram

K′×
(−,K′ab/K′)

//

NK′/K
��

W(K′ab/K′)

��

K×
(−,Kab/K)

// W(Kab/K)

commutes.

1.1.5. We also recall the reciprocity map (−,Kab/K) associated to an archi-

median local field K. It is the unique continuous homomorphism

(−,Kab/K) : K× → G(Kab/K)

sending −1 to the unique generator of G(Kab/K) which is either trivial (if

K
∼−→ C) or cyclic of order two (if K

∼−→ R).

1.2. The local reciprocity map and Lubin–Tate O-modules

We now define rank one O-local systems over p-adic sheaves and their moduli

stack C L O. We then define and study families of Lubin–Tate O-modules over

p-adic sheaves and show that C L O acts on the moduli stack MLT of Lubin–

Tate O-modules, making it a torsor under C L O (see (1.2.13) and (1.2.15)).

Finally, we explain in (1.2.19) how this action, combined with the basic prop-

erties of Lubin–Tate O-modules, allows one to construct the reciprocity map

of (1.1.3).

1.2.1. We shall be working with the category of p-adic sheaves, i.e. sheaves

S→ Spf(O) = colimn Spec(O/pn+1). If S→ Spf(O) is a p-adic sheaf then we

write Sn = S×Spf(O) Spec(O/pn+1) so that S = colimn≥0 Sn. Unless otherwise

stated S denotes a p-adic sheaf.

1.2.2. For each p-adic sheaf S we write ÔS for the pro-constant sheaf of rings

ÔS := lim
n

O/pn+1
S
.

If L is any finitely generated O-module then we write L̂S for the pro-constant

sheaf of ÔS-modules

L̂S := lim
n

L/pn+1L
S
.

If F and G are two ÔS-modules over S we write F⊗OG for the ÔS-module F⊗
ÔS

G and HomO
S (F,G) for the sheaf of ÔS-homomorphisms F→ G. Moreover, if

G = L̂S for some finite rank projective O-module L we shall just write F⊗O L

for F⊗
ÔS

L̂S.
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1.2.3. A rank one O-local system over a p-adic sheaf S is a sheaf L of ÔS-

modules with the property that there exists a cover (Si → S)i∈I and rank

one projective O-modules (Li)i∈I such that L ×S Si
∼−→ L̂iSi

. We denote by

C L O the moduli stack of rank one O-local systems over ShSpf(O). We list the

following (usual) constructions and properties of O-local systems:

(i) The tensor product L ⊗O L ′ of two rank one O-local systems L and

L ′ (in the category of ÔS-modules) is again a rank one O-local system.

(ii) The sheaf of ÔS-homomorphisms HomO
S (L ,L ′) is again a rank one O-

local system and defining L ∨ := HomO
S (L , ÔS) we have HomO

S (L ,L ′)
∼−→

L ′ ⊗O L ∨.

(iii) The sheaf of automorphisms AutO
S (L ) of a rank one ÔS-local system L

is isomorphic to Ô×S := limn (O/pn+1)×
S
.

(iv) The sheaf of ÔS-isomorphisms IsomS(L ,L ′) is pro-finite and étale over

S and is an Ô×S -torsor over S. We denote by ρL /S ∈ H1(S, Ô×S ) the class

of the torsor IsomS(L , ÔS) so that the map

L 7→ ρL /S ∈ H1(S, Ô×S )

defines a bijection between isomorphism classes of rank one O-local sys-

tems over S and H1(S, Ô×S ).

1.2.4. Let ÔS → OS be the unique homomorphism whose pull-back to Sn =

S×Spf(O) Spec(O/pn+1) is

ÔSn → O/pn+1
Sn
→ OSn

where the second map is induced by the structure map Sn → Spec(O/pn+1).

A strict formal O-module over S is a formal group F over S equipped with

the structure of a ÔS-module which is strict with respect to the homomorphism

ÔS → OS (cf. (A.2.4)). Recall that this means that the two actions of ÔS on the

OS-module LieF/S, coming from the action of ÔS on F and the homomorphism

ÔS → OS, coincide.

If L is a rank one O-local system over S then L (as an ÔS-module) satisfies

condition (P) of (A.2.1) as locally it is isomorphic to ÔS. So we may apply

(A.2.5) to see that if F is a strict formal O-module over S and L is a rank one

O-local system over S then F⊗O L is again a strict formal O-module over S

(of the same dimension as F).

Finally, we define the pn-torsion of a strict formal O-module F over S to be

the kernel of the homomorphism

ipn : F→ F⊗O p−n

induced by the inclusion O→ p−n.

1.2.5 Proposition. — Let F be a strict formal O-module of dimension one

over S. Then
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(i) locally on S there exists an isomorphism ρ : F
∼−→ Â1

S with the property

that for all ζ ∈ µNp−1 ⊂ O× we have ρ ◦ [ζ]F = ζ · ρ,

(ii) colimn F[pn] = F, and

(iii) ker(FrNpn

F0/S0
) ⊂ F0[pn].

Proof. — The claims are local on S so that we assume that S = Spec(A),

prA = (0) for some r ≥ 1 as S is p-adic, and by (A.1.7) we may also assume

that F = Â1
S.

(i) This is Lemma 4.1.2 of [26].

Before we show (ii) and (iii) let us fix some notation and make some reduc-

tions. If a ∈ O let us write [a](T) ∈ A[[T]] for the power series defining the

multiplication by a map

a : F = Â1
S → F = Â1

S.

We also choose a generator (π) = p so that ker(πn) = F[pn] for all n ≥ 0.

Considering the coefficients of the series

[π](T) = c1T + c2T2 + · · · ∈ A[[T]],

the strictness of the action of ÔS shows that c1 = π and by (i) we may assume

that [ζ](T) = ζT for ζ ∈ µNp−1 ⊂ O×. The relation

ζ[π](T) = [ζ]([π](T)) = [π]([ζ](T)) = [π](ζT)

for all ζ ∈ µNp−1 then shows that c2 = · · · = cNp−1 = 0. Thus we may assume

that

[π](T) = πT mod TNp.

We note that as prA = (0) we have

[πr](T) = 0 mod TNp.

(ii) It is enough to show that for all A-algebras B and b ∈ F(Spec(B)) =

Â1
S(Spec(B)) = nil(B) there is an n such that [πn](b) = 0. However, as

[πr](T) = 0 mod TNp we see that [πrm](b) = 0 whenever bmNp = 0 which

shows the claim.

(iii) We may assume that S = S ×Spf(O) Spec(O/p) = S0 so that pA = 0.

Then

[π](T) = cNpT
Np mod TNp+1

and hence

[πn](T) = c
Npn−1
Np−1

Np TNpn mod TNpn+1.

Thus if Spec(B) is an affine p-adic Spec(A)-scheme and if b ∈ nil(B) satisfies

FrNpn

B (b) = bNpn = 0 we have

[πn](b) = 0 mod bNpn = 0

and therefore ker(FrNpn

F/S ) ⊂ F[pn] for all n ≥ 1.
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1.2.6. A Lubin–Tate O-module over S is a strict formal O-module F over

S of dimension one (cf. (A.1.8)) with the property that the homomorphism

ip : F→ F⊗Op−1 is finite locally free of degree Np (in particular it is affine and

faithfully flat). A morphism of Lubin–Tate O-modules is just a homomorphism

of the underlying ÔS-modules. We denote by MLT the moduli stack of Lubin–

Tate O-modules over ShSpf(O).

1.2.7 Proposition. — If F/S is a Lubin–Tate O-module and L /S is an O-

local system then F⊗O L /S is a Lubin–Tate O-module.

Proof. — We have that F ⊗O L is a strict O-module of dimension one by

(A.2.5). The homomorphism

ip : F⊗O L → (F⊗O L )⊗O p−1

is finite locally free of degree Np as this can be checked locally, e.g. when

L
∼−→ ÔS, and in this case it is obvious.

1.2.8 Corollary. — For each pair L ,L ′ of rank one O-local systems over

S and each pair F,F′ of Lubin–Tate O-modules over S the natural map

HomO
S (F,F′)⊗O HomOK

S (L ,L ′)→ HomO
S (F⊗OK

L ,F′ ⊗OK
L ′)

is an isomorphism.

Proof. — This follows from (A.2.3).

1.2.9 Lemma. — Let S be a sheaf of characteristic p, n ≥ 0 and F be a

Lubin–Tate O-module over S. Then F[pn] = ker(FrNpn

F/S ).

Proof. — We may work locally on S and so assume that S = Spec(A) and

that F = Â1
S. By (iii) of (1.2.5) we have ker(FrNpn

F/S ) ⊂ F[pn]. As F = Â1
S, it

follows that ker(FrNpn

F/S ) is finite locally free of rank Npn over S. As F[pn] is

also finite locally free of rank Npn the closed immersion ker(FrNpn

F/S ) ⊂ F[pn]

must be an isomorphism.

1.2.10 Corollary. — For each n ≥ 0 there is a unique isomorphism of func-

tors

νpn : −⊗O p−n
∼−→ FrNpn∗(−)

on MLT×Spf(O) Spec(Fp) such that for all Lubin–Tate O-modules F over char-

acteristic p-sheaves S the diagram

F
FrNpn

F/S

##

ipn

{{

F⊗O p−n
νpn

∼
// FrNp∗(F)

commutes.
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Proof. — For any Lubin–Tate O-module F/S the two homomorphisms ipn and

FrNp
F/S are epimorphisms with the same kernel (1.2.9) and the claim follows.

1.2.11 Remark. — The result (1.2.10) can be read as saying that the moduli

stack MLT admits an endomorphism − ⊗O p−1 : MLT → MLT which (upto

canonical isomorphism) lifts the Np-power Frobenius endomorphism. This

kind of structure is very closely related to the notions of Λ-structures, Witt

vectors and arithmetic jets (due to Borger and Buium) which we define and

study in Chapter 3. It is essentially the topic of Chapter 4 to study and exploit

this relationship in the context of CM elliptic curves (for which we prove an

analogue of (1.2.10) in Chapter 2, see (2.2.13)).

1.2.12 Proposition. — (i) If F is a Lubin–Tate O-module over S the nat-

ural homomorphism

ÔS → EndO
S (F)

is an isomorphism.

(ii) If F,F′ are a pair of Lubin–Tate O-modules over S then HomO
S (F,F′) is

an O-local system over S and the evaluation homomorphism

F⊗O HomO
S (F,F′)→ F′

is an isomorphism.

Proof. — The proof of these statements is an application of Faltings’ gener-

alised Cartier duality [20]. It would take us too far afield to give the proof

here and so we defer it to the appendix (see (i) and (ii) of (A.3.7)).

1.2.13 Proposition. — The functor

MLT × C L O →MLT ×MLT : (F,L ) 7→ (F,F⊗O L )

is an equivalence of stacks.

Proof. — As with (1.2.12), the proof of this statement will be given in the

appendix (see (iii) of (A.3.7)).

1.2.14 Remark. — It would be preferable to have elementary proofs of (1.2.12)

and (1.2.13) which do not rely on the machinery of Faltings’ generalised Cartier

duality.

1.2.15 Example. — Let us now at least tell the reader that there do ex-

ist Lubin–Tate O-modules. First, if O = Zp then the p-power torsion in

Gm/Spf(O):

µp∞ = colim
n

µpn ⊂ Gm/Spf(O)

is a Lubin-Tate Zp-module and it also has the property that the multiplication

by p map p : µp∞ → µp∞ reduces to the p-power Frobenius after base change

along Spec(Fp)→ Spf(Zp).
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In fact, for any O, given a generator π of the prime ideal p, there is a unique

(upto isomorphism) Lubin–Tate O-module Fπ over Spf(O) with the property

that the endomorphism π : Fπ → Fπ reduces to the Np-power Frobenius

map after base change along Spec(Fp) → Spf(O) (see §3.5 Chapter VI [1]).

Moreover, there exists a unique isomorphism Fπ
∼−→ Â1

Spf(O) under which the

multiplication by π is represented by the power series [π](T) = πT + TNp.

A consequence of this is that the morphism MLT → Spf(O) admits a section.

The statement of (1.2.13) above can now be interpreted as saying that MLT

is (in a stack theoretic sense) a torsor under the (stack theoretic) group C L O

albeit a trivial one:

1.2.16 Corollary. — Fixing a Lubin–Tate O-module F over Spf(O) the func-

tor

C L O →MLT : L /S 7→ FS ⊗O L /S

is an equivalence of stacks.

1.2.17 Corollary. — Let S0 → S be a nilpotent immersion of p-adic sheaves.

The functor

MLT(S)→MLT(S0) : F 7→ FS0

is an equivalence of categories.

Proof. — This follows from (1.2.16) and the corresponding obvious claim for

C L O (which is a moduli space of pro-étale objects).

1.2.18 Corollary. — Let f : F → F′ be a homomorphism of Lubin–Tate

O-modules over S. Then there is a unique decomposition S = S(0)q0≤n<∞ Spn

such that fS(0)
is the zero map and such that ker(fSpn

) = FSpn
[pn] for 0 ≤ n <

∞.

Proof. — We have F′
∼−→ F ⊗O L for some rank one O-local system L by

(1.2.13) and the homomorphism

f : F→ F⊗O L

is of the form idF ⊗O h for some homomorphism

h : ÔS → L

by (i) of (A.2.3).

Define the sub-sheaves S(0) ⊂ S (resp. Spn ⊂ S for 0 ≤ n < ∞) by the

property that hS(0)
is the zero map (resp. hSpn

factors as

ÔSpn

∼−→ pn ⊗O LSpn
→ LSpn

where the second map is multiplication). These definitions combined with

f = idF ⊗O h show that fS(0)
is the zero map that fSpn

= idFSpn
⊗O hSpn

factors as

FSpn

∼−→ F′Spn
⊗O pn → F′Spn
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where the second map is multiplication and hence ker(fSn) = FSn [pn]. More-

over, it is clear that S(0) and all the Spn for 0 ≤ n <∞ are disjoint and so to

prove our claim we need to show that S(0)q0≤n<∞Spn → S is an epimorphism.

For this we may localise S and assume that L = ÔS and h = a ∈ O ⊂ ÔS(S).

Then either a = 0, in which case h is the zero map so that S(0)
∼−→ S, or a 6= 0,

in which case a ·O = pn for some integer n ≥ 0 and h = a factors as

ÔS
∼−→ ÔS ⊗O pn → ÔS,

so that Spn
∼−→ S. It follows that S(0) q0≤i<∞ Spn = S.

1.2.19. Classically one relates the reciprocity map of the local field K to

Lubin–Tate O-modules as follows. Write S = Spf(OKsep) and let F be the

unique Lubin–Tate O-module over Spf(O) such that π : F → F reduces to

the Np-power Frobenius after base change to Spec(Fp). Then for each r ≥ 0,

the O/pr-module F[pr](S) is free of rank one and colimr(F[pr](S))
∼−→ K/O

(non-canonically). We then obtain the character

ρπ : G(Ksep/K)→ lim
r

AutO(F[pr](S)) = lim
r

(O/pr)× = O×

defining the action of G(Ksep/K) on colimr(F[pr](S)). The relationship be-

tween the character ρπ and the reciprocity map (1.1.3.1) is that for all σ ∈
W(Ksep/K) we have

σ|Kab = (πvK(σ)ρπ(σ)−1,Kab/K) (1.2.19.1)

(see §3.7 Chapter VI of [1]).

We would now like to show how one can construct the reciprocity map of

local class field theory in a slightly more abstract but direct way using only

the Frobenius lift property (1.2.10) of Lubin–Tate O-modules and the C L OK
-

torsor structure of MLT. Write S = Spec(Fsep
p ) ⊂ S = Spf(OKsep) and for a

Lubin–Tate O-module F→ S write F = F×S S and Fr = F[pr] for each r ≥ 0.

1.2.20 Proposition. — Let σ ∈W(Ksep/K) satisfy vK(σ) = n ≥ 0. Then

(i) for each Lubin–Tate O-module F over S there is a unique isomorphism

νσ : F⊗O p−n
∼−→ σ∗(F) whose pull-back along S→ S is the isomorphism

νpn : F⊗O p−n
∼−→ FrNpn∗(F) of (1.2.10),

(ii) there is a generator χK(σ) ∈ K× of pn, independent of F, such that for

all r ≥ 0, the isomorphism induced by νσ on the S-points of the pr-torsion

of F

Fr(S)⊗O p−n
∼−→ σ∗(Fr)(S)

is equal to

Fr(S)⊗O p−n
Fr(σ)⊗χK(σ)−→ Fr(σ!(S)) = σ∗(Fr)(S),

(iii) if τ ∈W(Ksep/K) also satisfies vK(τ) ≥ 0 then in the notation of (ii) we

have χK(στ) = χK(σ)χK(τ), and

(iv) σ|Kab = (χK(σ),Kab/K).
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Proof. — (i) The existence of νpn follows from (1.2.17) applied to the nilpotent

immersion Sp → S and the fact that the restriction of σ to S is equal to FrNpn .

(ii) For all r ≥ 0 we have that Fr(S) is a free rank one OK/p
r-module and

so writing νσ,r for the restriction of νσ to the S-valued points of the pr-torsion,

we set

χK,r(σ) = Fr(σ)−1 ◦ νσ,r ∈ IsomO(Fr(S)⊗O p−n,Fr(S))

= IsomO(Fr(S),Fr(S)⊗O pn)

⊂ pn ⊗O O/pr.

Then χK(σ) is given by the limit limr χK,r(σ) ∈ limr p
n ⊗O O/pr = pn. It is

a generator of pn as χK,r(σ) is a generator of the free rank one O/pr-module

O/pr ⊗O pn for all r ≥ 0.

First, it is clear that χK(σ) depends only on the isomorphism class of F.

However, by (1.2.13), every other Lubin–Tate O-module over S is of the form

F ⊗O L for some rank one O-local system L . But every rank one O-local

system L over Spf(OKsep) is pro-constant and isomorphic to ÔS. Therefore,

all Lubin–Tate O-modules over S are isomorphic and χK(σ) is independent of

the Lubin–Tate O-module F over S (admittedly there is only one!).

(iii) Write m = vK(τ). Then the two isomorphisms

νστ and τ∗(νσ) ◦ (ντ ⊗O p−m)

between

F⊗O p−n−m
∼−→ (σ ◦ τ)∗(F) = τ∗(σ∗(F)))

both pull-back to the isomorphism νpn+m of (1.2.10) along S → S. By the

uniqueness in (i) we get

νστ = τ∗(νσ) ◦ (ντ ⊗O p−m)

from which we find the relation χK(στ) = χK(σ)χK(τ).

(iv) With notation as in (1.2.19) take F = Fπ×Spf(O)S. As πn : Fπ → Fπ lifts

the Npn-power Frobenius endomorphism of Fπ ×Spf(O) Spec(Fp) the (unique)

isomorphism

νσ : F⊗O p−n
∼−→ σ∗(F)

of (i) is given by

F⊗O p−n
πn−→ F

dσ−→ σ∗(F) (1.2.20.1)

where dσ : F
∼−→ σ∗(F) is the descent isomorphism (coming from the fact that

F = Fπ×Spf(O) S is defined over Spf(O)). The isomorphism dσ on the S-points

of the pr-torsion is given by

Fr(S)
ρπ(σ)−1·Fr(σ)−→ Fr(σ!(S)) = σ∗(Fr)(S)

so that νσ on the S-points of the pr torsion is given by (cf. (1.2.20.1))

Fr(S)⊗O p−n
1⊗πn−→ Fr(S)

ρπ(σ)−1·Fr(σ)−→ Fr(σ!(S)) = σ∗(Fr)(S).
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Therefore χK(σ) = πnρπ(σ)−1 and by (1.2.19.1) we get

σ|Kab = (πnρπ(σ)−1,Kab/K) = (χK(σ),Kab/K).

1.2.21 Remark. — From (i), (ii) and (iii) of (1.2.20) we see that we can as-

sociate to any element of σ ∈ v−1
K (N≥0) ⊂W(Ksep/K) an element χK(σ) ∈ K×

and that this association is multiplicative. It therefore extends to a homomor-

phism

W(Ksep/K)→ K× : σ 7→ χK(σ) (1.2.21.1)

and (iv) of (1.2.20) states that this map satisfies

σ|Kab = (χK(σ),Kab/K)

for all σ ∈ W(Ksep/K). Thus we have derived the local reciprocity map

(1.1.3.1) using nothing more than the basic properties of Lubin–Tate O-modules

(in particular, the Frobenius lifting property (1.2.10) and the C L O-torsor

structure of MLT (1.2.13)).

1.2.22 Remark. — If K ⊂ L ⊂ Ksep is a finite extension and F/Spf(OL) is

a Lubin–Tate O-module let us write

ρF/OL
: G(Ksep/L)→ O×

for the (continuous) character defining the action of G on

colim
r

(F[pr](Spf(OKsep)))
∼−→ K/O.

Then a continuous character ρ : G(Ksep/L)→ O× is of the form ρF/OL
if and

only if the diagram

W(Ksep/L)

χK
%%

ρ−1
F/OL
// O×

��

K×

commutes where the right vertical map is the inclusion. We mention this

mainly as it is analogous to the classification of elliptic curves with complex

multiplication over fields in terms of their associated characters we will give

in Chapter 2 (see (iii) of (2.5.10)).

1.2.23 Remark. — Of course, the theory of Lubin–Tate O-modules and the

local reciprocity map are themselves not particularly complicated and one

can derive the reciprocity map in any number of ways. We believe the this

approach above has some advantages over the classical one, first and foremost

it is choice free, and secondly one gets the whole of the local reciprocity map

right of the bat, rather than first finding a character

ρπ : G(Ksep/K)→ O×
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which one then restricts to W(Ksep/K) ⊂ G(Ksep/K), takes the reciprocal of

and then multiplies by the character

W(Ksep/K)→ K× : σ 7→ πvK(σ).

The derivation of the local reciprocity map we have given is also analogous

to the derivation (2.5.9) of the global reciprocity map for imaginary quadratic

fields which we will give using CM elliptic curves in Chapter 2. Moreover, in

the case of CM elliptic curves and imaginary quadratic fields, the situation

is somewhat more delicate — one cannot just find CM elliptic curves with

suitable properties from which one can construct the global reciprocity map

in the same way one can with Lubin–Tate O-modules.

1.3. The global reciprocity map

In this section we recall the basic objects required to define, and then we

recall, the global reciprocity map (1.3.3) associated to a global field K.

1.3.1. Let K be a global field and fix maximal abelian and separable exten-

sions K ⊂ Kab ⊂ Ksep. Write PK for the set of places of K, and as usual, if

K is a number field we identify the non-archimedian places v ∈ PK with the

prime ideals p ⊂ OK of the ring of integers of K. For v ∈ K we write Kv for

the completion of K with respect to v and if v is archimedian OKv ⊂ Kv for

the ring of local integers. We write Parch
K ⊂PK for the subset of archimedian

places (which is of course empty if K is a function field).

Let K ⊂ L ⊂ Ksep be a finite Galois extension. If w ∈ PL is a non-

archimedian place and the extension L/K is unramified at w then we write

σL/K,w ∈ G(L/K), or just σw, for the Frobenius element associated to w. If

L/K is abelian (so that σL/K,w depends only on w|K = v ∈PK) then we write

σL/K,v, or again just σv, for σL/K,w.

1.3.2. For each finite set S ⊂PK containing all archimedian places of K we

write IK,S for the topological group

IK,S =
∏

v∈PK−S

O×Kv ×
∏
v∈S

K×v

(the topology being the product topology). For S ⊂ S′ ⊂ PK the inclusions

IK,S ⊂ IK,S′ are open and the group of idèles of K is the topological group

IK = colim
S

IK,S

(the topology being the colimit topology). The diagonal embedding K× → IK

makes K× a discrete subgroup of IK and the idèle class group of K is the

quotient CK = IK/K
×. The embeddings K×v → IK → CK for each place v of

K make K×v a closed subgroup of IK and CK.
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1.3.3 Theorem. — There is a unique continuous homomorphism

CK → G(Kab/K) : s 7→ (s,Kab/K)

such that for each place v of K and each K-linear embedding Kab → Kab
v the

following diagram commutes

CK

(−,Kab/K)
// G(Kab/K)

K×v

OO

(−,Kab
v /Kv)

// G(Kab
v /Kv).

OO

Proof. — See §§4–6 Chapter VII of [1].

1.3.4. We list the following further properties of the reciprocity map (see

§§4–6 Chapter VII of [1]).

(a) If K′/K is any finite Galois extension, with maximal abelian extension

K′ab, the diagram

CK′
(−,K′ab/K′)

//

NK′/K

��

G(K′ab/K′)

��

CK

(−,Kab/K)
// G(Kab/K)

commutes (where NK′/K denotes the map induced by the norm IK′ → IK).

(b) The kernel of the reciprocity map is C◦K ⊂ CK (a superscript ◦ denotes

the connected component of the identity of a topological group). If K is

a function field then C◦K is trivial and (−,Kab/K) is injective. If K is a

number field then C◦K is the closure of the sub-group∏
v∈Parch

K

K×,◦v ⊂ CK

and (−,Kab/K) is surjective. We note that if Parch
K = {∞} contains

only one place then K×,◦∞ = C◦K and we obtain a topological isomorphism

CK/K
×,◦
∞

∼−→ G(Kab/K).

1.4. Global fields with a single ‘infinite’ place and class groups

In this section we describe a variant of the reciprocity map associated to

the maximal abelian extension K∞ of a global field K which is totally split

at a fixed place ∞ satisfying Parch
K ⊂ {∞}. If K is a function field then any

place ∞ satisfies the above property and if K is a number field then the only

possibilities are K = Q or K an imaginary quadratic and in each case∞ equal

to the unique archimedian place of K.
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As mentioned in the introduction to this chapter, the fact that such pairs

(K,∞) should be considered along similar lines is due to Drinfel’d [18] and

essentially all we are doing here is collecting the relevant facts for use in

the later chapters. It is worth noting here that the abelian extensions of K

contained in K∞ have a long history mainly due to the fact that they are

amenable to explicit computation via the use of Drinfel’d modules in case K

is a function field, tori if K = Q and CM elliptic curves if K is an imaginary

quadratic field (what Drinfel’d originally called ‘elliptic modules of rank one’).

While we are only concerned with the final case in this thesis, the abstract

theory we describe below is valid for arbitrary pairs (K,∞).

1.4.1. Let K be a global field, and fix a place∞ of K such that Parch
K ⊂ {∞}.

We call ∞ the infinite place, and the places in PK −∞ the finite places and

denote them by Pfin
K . As every place v 6= ∞ is non-archimedian the subset

OK = {a ∈ K : |a|v ≤ 1 for all v 6= ∞} ⊂ K is a Dedekind domain, and its

prime ideals are in bijection with the set Pfin
K .

The group of units O×K is finite and we denote its order by w. We want to

point out that for what follows in this section, and in the following chapters,

this fact is quite crucial. It implies in particular that given any ideal f there is

an ideal f|f′ with the property that f′ separates units, i.e. the homomorphism

O×K → (OK/f
′)×

is injective or what is the same O×,f
′

K = {1} (of course, if f 6= OK any high

power of f will do).

1.4.2. We write AOK
for the topological ring

lim
a

OK/a =
∏
p

OKp ,

the topology being the product topology or the inverse limit topology induced

by the discrete topologies on the finite sets OK/a (they are the same). We

also view

A×OK
= lim

a
(OK/a)× =

∏
O×Kp

as a topological group via the topology induced from AOK
, the product topol-

ogy or the inverse limit topology (again they are one and the same). For each

integral ideal f we denote by A×,fOK
the open subgroup

ker(A×OK
→ (OK/f)

×).

For each integral ideal a we equip

AOK
[a−1]× :=

∏
p|a

K×p ×
∏
p-a

O×Kp
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with the product topology. If a|b the inclusion AOK
[a−1]× ⊂ AOK

[b−1]× is

open and we equip

(AOK
⊗OK

K)× = colim
a

AOK
[a−1]×

with the colimit topology. The natural map

IK → (AOK
⊗OK

K)×,

induced by forgetting the component at ∞, is continuous and surjective and

induces topological isomorphism

IK/K
×
∞

∼−→ (AOK
⊗OK

K)×.

1.4.3. We will now relate the group (AOK
⊗OK

K)× to certain class groups

associated to OK. So let f ∈ IdOK
and let L be a projective rank one OK-

module. A level-f structure on L is a surjective homomorphism a : L→ OK/f.

An f-isomorphism f : (L, a)
∼−→ (L′, a′) between a pair of projective rank one

OK-modules with level-f structures is an OK-isomorphism f : L→ L′ such that

h ◦ a′ = a. We denote by CL
(f)
OK

the set of f-isomorphism classes of rank one

projective OK-modules with level-f structure. Equipping it with the product

(L, a) · (L′, a′) = (L⊗OK
L′, a⊗OK

a′),

CL
(f)
OK

becomes a group, which we call the ray class group of conductor f.

If a is any fractional ideal prime to f, the multiplication map

a⊗OK
OK/f

∼−→ OK/f

is well defined, and an isomorphism, so that setting f : a → OK/f to be the

composition

a→ a⊗OK
OK/f

∼−→ OK/f (1.4.3.1)

equips a with a level-f structure. We write [a]f = (a, f) ∈ CL
(f)
OK

for the

corresponding class. This defines a surjective homomorphism

Id
(f)
K → CL

(f)
OK

: a 7→ [a]f

whose kernel is the group Prin
(f)
1 mod f of principal fractional ideals a = OK mod

f admitting a generator a ∈ K× with a = 1 mod f. If f|f′ then

CL
(f′)
OK
→ CL

(f)
OK

: (L, a) 7→ (L, a mod f)

defines a surjective homomorphism and we define the topological group

CLOK,∞ = lim
f

CL
(f)
OK

(the topology being the inverse limit of the discrete topologies on the CL
(f)
OK

).

Finally, if f = OK then we identify CLOK
OK

with the class group CLOK
of OK.
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1.4.4. Given an element s ∈ (AOK
⊗OK

K)×, we write (s) ∈ IdK for the

fractional ideal

(s) =
∏
p

pvp(s).

For each integral ideal f, we equip (s)−1 with the level-f structure

(s)−1 s→ AOK
→ OK/f

and write [s]f ∈ CL
(f)
OK

for the corresponding class. This defines a continuous

surjective homomorphism

(AOK
⊗OK

K)× → CL
(f)
OK

: s 7→ [s]f

with kernel K× · A×,fOK
. Finally, if f|f′ the image of [s]f′ under CL

(f′)
OK
→ CL

(f)
OK

is [s]f and so taking the limit over f we obtain a homomorphism

[−] : (AOK
⊗OK

K)× → CLOK,∞ = lim
f

CLOK
(f) : s 7→ [s] = lim

f
[s]f. (1.4.4.1)

1.4.5 Proposition. — The map [−] is continuous and the sequence

0→ K× → (AOK
⊗OK

K)×
[−]→ CLOK,∞ → 0

is exact.

Proof. — It is clear that s 7→ [s] is continuous (as s 7→ [s]f is continuous for

each f) and if we can show that ker(s 7→ [s]) = K× then the surjectivity of

s 7→ [s] follows as s 7→ [s]f is surjective for each f and (AOK
⊗OK

K)×/K× =

CK/K
×
∞ is compact.

The kernel of s 7→ [s] is equal to⋂
f

ker(s 7→ [s]f) =
⋂
f

(K× ·A×,fOK
).

If s is an element of this kernel then for all integral ideals f we can write

s = afsf where af ∈ K× and sf ∈ A×,fOK
. The elements af and sf are unique upto

scaling by an element of O×,fK so that if f separates units both af and sf are

unique, and moreover equal to af′ and sf′ for any integral ideal f′ divisible by

f. Fixing such an f it follows that

sf ∈
⋂
f|f′

A×,f
′

OK
= {1}

so that s = afsf = af ∈ K× and we are done.

1.4.6 Remark. — The exactness of the sequence (1.4.5) is the first result of

many that will rely crucially on the fact that the unit group O×K is finite.
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1.4.7. We write K∞/K for the maximal abelian extension of K which is

totally split at ∞. The kernel of the surjective map

CK → G(K∞/K)

is precisely K×∞ (cf. (b) of (1.3.4)) so that we obtain continuous isomorphisms

(AOK
⊗OK

K)×/K× = IK/(K
×K×∞) = CK/K

×
∞ → G(K∞/K).

Let us write

(−,K∞/K) : (AOK
⊗OK

K)×/K×
∼−→ G(K∞/K). (1.4.7.1)

for this isomorphism and also

θK : CLOK,∞
∼−→ G(K∞/K) (1.4.7.2)

for the isomorphism

CLOK,∞
∼←− (AOK

⊗OK
K)×/K×

(−,K∞/K)−→ G(K∞/K)

so that for all s ∈ (AOK
⊗OK

K×)/K× we have

θK([s]) = (s,K∞/K).

If f is an integral ideal of OK then, under θK, the kernel of the homomorphism

CLOK,∞ → CL
(f)
OK

corresponds to the subgroup G(K∞/K(f)) ⊂ G(K∞/K) of automorphisms

fixing a certain finite abelian extension K ⊂ K(f) ⊂ K∞ which we call the

ray class field of conductor f. By definition the map (1.4.7.2) induces an

isomorphism

θK,f : CL
(f)
OK

∼−→ G(K(f)/K). (1.4.7.3)

The extension K(f)/K is unramified away from f and if p is prime to f then

θK,f([p]−1
f ) = θK,f([π]f) = σK(f)/K,p

where π ∈ K×p ⊂ (AOK
⊗OK

K)× is any local uniformiser. In particular, when

f = OK the field H := K(OK) is called the Hilbert class field. It is unramified

everywhere and the isomorphism

θK,OK
: CLOK

∼−→ G(H/K)

maps the class of the inverse of each prime ideal [p−1] ∈ CLOK
to the Frobenius

element σH/K,p.

1.4.8 Remark. — For future reference we make the following observations.
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(a) The composition

A×,fOK
/O×,fK → (A⊗OK

K×)/K×
[−]→ CLOK,∞

θK→ G(K∞/K)

induces an isomorphism

A×,fOK
/O×,fK

∼−→ G(K∞/K(f)) ⊂ G(K∞/K). (1.4.8.1)

In particular, when f separates units we have O×,fK = {1} so that (1.4.8.1)

becomes

A×,fOK

∼−→ G(K∞/K(f)).

(b) For each prime p of OK and each K-linear embedding Ksep → Ksep
p , the

map

K×p
(−,Kab

p /Kp)
−→ G(Ksep

p /Kp)→ G(Ksep/K)
−|K∞→ G(K∞/K)

θ−1
K→ CLOK,∞

is given by

a 7→ [a] (1.4.8.2)

where we view a ∈ K×p ⊂ (AOK
⊗OK

K)×.

1.5. Class stacks

We now extend the definition of the level-f structures on OK-modules to

level-f structures on OK-local systems over sheaves and give several basic re-

sults concerning them and their moduli stacks.

1.5.1. So let S be a sheaf over Spec(OK) (this is technically not important for

what follows) and consider the constant sheaf of rings OKS
on S associated to

OK. If L is any OK-module we write LS for the corresponding constant OKS
-

module. If F and G are two OKS
-modules over S we write F ⊗OK

G for the

tensor product F⊗OKS
G and if G = LS for some OK-module L we just write

F ⊗OK
L. We also write HomOK

S (F,G) for the sheaf of OKS
-homomorphisms

F→ G.

1.5.2. A rank one OK-local system on S is a sheaf of OKS
-modules L over

S such that there exists a cover (Si → S)i∈I, rank one projective OK-modules

(Li)i∈I and OKS
-isomorphisms L ×S Si

∼−→ LiSi
. The moduli stack of rank

one OK-local systems over ShOK
is denoted by C L OK

. We list the following

(usual) constructions and properties of OK-local systems.

(i) The tensor product L ⊗OK
L ′ of two rank one OK-local systems L and

L ′ is again a rank one OK-local system.

(ii) The sheaf of OKS
-homomorphisms HomOK

S (L ,L ′) is again a rank one

OK-local system and defining L ∨ := HomOK
S (L ,OKS

) we have L ′ ⊗OK

L ∨ ∼−→ HomOK
S (L ,L ′).
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(iii) The sheaf of automorphisms AutOK
S (L ) of a rank one OK-local system

L is isomorphic to OK
×
S

.

(iv) The sheaf of OK-isomorphisms IsomOK
S (L ,L ′) is finite and étale over S

and L and L ′ are locally isomorphic on S if and only if IsomOK
S (L ,L ′)→

S is an epimorphism if and only if the action of O×KS
on IsomOK

S (L ,L ′)→
S makes it a torsor.

(v) Every rank one OK-local system is, locally on S, isomorphic LS for some

rank one projective OK-module L whose corresponding class in CLOK
is

independent of the choice of L. Thus given an OK-local system L on S

one obtains a section cL /S ∈ CLOK
(S), or what is the same a map

cL /S : S→ CLOK

from S to the constant sheaf over Spec(OK) associated to the group

CLOK
. Moreover, if one chooses representatives L of each class [L] ∈

CLOK
and considers the rank one OK-local system over CLOK

:

[L]univ :=
∐

[L]∈CLOK

L→
∐

[L]∈CLOK

Spec(OK) = CLOK

then IsomOK
S (L , c∗L /S([L]univ)) is an O×KS

-torsor whose corresponding

class in H1(S,O×KS
) we denote by ρL /S. The resulting map

L 7→ (cL /S, ρL /S) ∈ CLOK
(S)×H1(S,O×KS

)

defines a bijection between isomorphism classes of rank one OK-local

systems over S and the set CLOK
(S)×H1(S,O×KS

).

1.5.3. If f is an integral ideal of OK a level-f structure on a rank one OK-local

system L over S is an epimorphism of OKS
-modules α : L

∼−→ OK/fS. An

f-isomorphism f : (L , α)
∼−→ (L ′, α′) of rank one OK-local systems of over S

equipped level-f structures is an OK-linear isomorphism f : L
∼−→ L ′ such

that α′ ◦ f = α. With this definition every (L , α) is, locally on S, of the

form (LS, aS) for some (L, a) ∈ CL
(f)
OK

. When working with rank one OK-local

systems we will often drop explicit reference to the level-f structure when it is

clear from context. We list the following (usual) constructions and properties

of OK-local systems with level-f structure.

(i) The tensor product L ⊗OK
L ′ of two rank one O-local systems (L , α)

and (L ′, α′) equipped with level-f structures is again a rank one OK-local

system with level-f structure given by α⊗OK
α′.

(ii) The sheaf of OKS
-homomorphisms HomOK

S (L ,L ′) is again a rank one

OK-local system with level-f structure given by

HomOK
S (L ⊗OK

OK/f,L
′ ⊗OK

OK/f)
∼−→ HomOK

S (OK/fS,OK/fS) = OK/fS,
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and equipping L ∨ := HomOK
S (L ,OKS

) with this level-f structure makes

L ′ ⊗OK
L ∨ ∼−→ HomOK

S (L ,L ′) is an f-isomorphism.

(iii) The sheaf of f-automorphisms Aut
(f)
S (L ) of a rank one OK-local system

(L , α) with level-f structure is equal to (OK/f)
×

S
and in particular is

trivial if f separates units.

(iv) The sheaf of f-isomorphisms Isom
(f)
S (L ,L ′) between two rank one OK-

local systems with level-f structure is finite and étale over S and L and

L ′ are locally f-isomorphic if and only if Isom
(f)
S (L ,L ′) is an O×,fK S

-

torsor.

(v) Every rank one OK-local system with level-f structure is, locally on S, f-

isomorphic (LS, aS) for some rank one projective OK-module with level-f

structure (L, a) whose corresponding class in CL
(f)
OK

is independent of the

choice of L. Thus given an OK-local system L on S one obtains a section

cL /S,f ∈ CL
(f)
OK

(S), or what is the same a map

cL /S,f : S→ CL
(f)
OK

from S to the constant sheaf over Spec(OK) associated to the group

CL
(f)
OK

. Moreover, if one chooses representatives (L, a) of each class

[L, a] ∈ CL
(f)
OK

and considers the rank one OK-local system with level-

f structure over CL
(f)
OK

:

[L, a]univ :=
∐

[L,a]∈CLOK

(L, a)→
∐

[L,a]∈CL
(f)
OK

Spec(OK) = CL
(f)
OK

then Isom
(f)
S (L , c∗L /S([L, a]univ)) is an O×,fK S

-torsor whose corresponding

class in H1(S,O×,fK S
) we denote by ρL /S,f. The resulting map

L 7→ (cL /S,f, ρL /S,f) ∈ CL
(f)
OK

(S)×H1(S,O×KS
)

defines a bijection between isomorphisms classes of rank one OK-local

systems over S and the set CLOK
(S) × H1(S,O×,fK S

). In particular, if f

separates units then H1(S,O×,fK S
) = 0 and the map

L 7→ cL /S,f ∈ CL
(f)
OK

(S)

defines a bijection between f-isomorphism classes of rank one OK-local

systems with level-f structure over S and elements of CL
(f)
OK

.

(vi) If f separates units, (L , α) is an OK-local system equipped with a level-f

structure and S is connected, then (L , α)
∼−→ (LS, aS) for some rank

one projective OK-module with level-f structure and in particular, L is

constant.
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1.5.4 Corollary. — The map

C L
(f)
OK
→ CL

(f)
OK

: L /S 7→ cL /S ∈ CL
(f)
OK

(S)

identifies CL
(f)
OK

with the coarse sheaf of C L
(f)
OK

and is an equivalence whenever

f-separates units.

Proof. — This follows from the remarks (1.5.3).





CHAPTER 2

ELLIPTIC CURVES WITH COMPLEX

MULTIPLICATION

In this chapter we develop the general theory of (families of) elliptic curves

with complex multiplication by the ring of integers OK of a fixed imaginary

quadratic field K, here on called just CM elliptic curves. In §1 we recall several

standard results from the theory of (families of general) elliptic curves. In §2
we define the notion of a family E→ S of CM elliptic curves, the corresponding

moduli stack MCM, and we show that (just as with Lubin–Tate O-modules)

the moduli stack C L OK
of rank one OK-local systems acts in a natural way

on the moduli stack MCM of CM elliptic curves. We then describe, for a prime

p ⊂ OK, the properties of the p-power torsion subgroups E[p∞] ⊂ E of a family

of CM elliptic curves and show that when S is a p-adic sheaf E[p∞] is a Lubin–

Tate OKp-module. In §3 we consider CM elliptic curves over complex and

p-adic bases and give CM analogues of the classification of elliptic curves over

complex bases, and theorem of Serre-Tate describing deformations of elliptic

curves over p-adic bases. In §4 we show that any two CM elliptic curves over

the same base are locally isogenous and from this deduce that the action of

C L OK
on MCM gives MCM the structure of a torsor. In §5 we derive the global

reciprocity map associated to the maximal abelian extension of K (totally

split at ∞ – but this is a vacuous condition) directly from the stack MCM in

a manner quite analogous to the derivation of the local reciprocity map via

the moduli stack of Lubin–Tate O-modules. We then classify all CM elliptic

curves over fields (both of characteristic zero and finite characteristic) and

prove some results regarding good reduction. In §5 we define level-f structures

for CM elliptic curves and consider the corresponding moduli stacks M
(f)
CM.

As with MCM and C L OK
, we show that M

(f)
CM is a torsor under C L

(f)
OK

(at

least after inverting f). Using this we show that the coarse sheaf of M
(f)
CM is

isomorphic to Spec(OK(f)[f
−1]) where K(f) is the ray class field of conductor f.

We should point out that, aside from the C L OK
-torsor structure of MCM,

consistently working over a general base (instead of a field) and our derivation

of the reciprocity map, almost everything in this chapter is probably more or

less already known. This combined with the fact that MCM is zero dimensional
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over Spec(OK), the advantages of our general approach may be somewhat un-

clear. However, while MCM is geometrically rather simple, it is arithmetically

quite complicated and the general approach we take in this chapter will al-

low for great deal of flexibility later when we wish to study some of its finer

arithmetic properties.

2.1. General elliptic curves

We now recall the definition of a family of elliptic curves over a sheaf S and

recall several standard results. In particular, the fact that the moduli stack

of elliptic curves is indeed a stack, the rigidity principal for homomorphisms,

the representability of Isom sheaves, Grothendieck’s formal GAGA, the classi-

fication of elliptic curves over complex schemes S in terms of rank two Z-local

systems over San, the Serre-Tate theorem, and the criterion of good reduction.

2.1.1. Let S be a sheaf. An elliptic curve over S is a sheaf of groups E → S

which is relatively representable, smooth of relative dimension one, proper

and geometrically connected. A morphism is of course a homomorphism of

the underlying (sheaves of) groups over S. For many more general properties

and constructions related to families of elliptic curves E → S we refer the

reader to the wonderful book of Katz-Mazur [24].

If S is a sheaf we write Ell(S) for the category of elliptic curves over S and

we denote by MEll the fibred category over Sh whose fibre over a sheaf S is

the category elliptic curves E/S together with their isomorphisms.

2.1.2 Proposition. — The fibred category MEll is a stack over Sh.

Sketch. — If S is an affine scheme and f : E → S is a family of elliptic

curves let IE/S ⊂ OE denote the ideal sheaf defining the zero section S → E

(it is a locally free rank one OE-module). The quasi-coherent OS-module

WE/S = f∗(I
−3
E/S) is a vector bundle of rank three, the morphism

f∗f∗(I
−3
E/S)→ I −3

E/S

is an epimorphism and defines a closed immersion wE/S : E→ P(WE/S). Both

the vector bundle WE/S and the morphism wE/S are functorial in S so that

by descent if E → S is any family of elliptic curves over a sheaf S then there

is a unique vector bundle WE/S of rank three over S together with a closed

immersion wE/S : E → PS(WE/S) compatible with those defined when S is

affine.

Now if S is an sheaf and (fi : Ei → Si)i∈I is a family of elliptic curves

equipped with descent data relative to a cover (Si)i∈I of S then the Ei descend

to a sheaf of groups E→ S, the vector bundles WEi/Si to a vector bundle WE/S

and the closed immersions wEi : Ei → P(WEi/Si) to a closed immersion

wE/S : E→ P(WE/S).
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This shows that the morphism p : E → S is representable (in fact projective)

and by descent it follows that E→ S is also smooth of relative dimension one,

proper, and geometrically connected so that E → S is an elliptic curve over

S.

2.1.3. Here we recall several useful properties enjoyed by homomorphisms of

elliptic curves.

2.1.4 Proposition. — Let S be a sheaf and let E→ S be a family of elliptic

curves. For each n ≥ 1 multiplication map n : E → E is finite locally free of

degree n2.

Proof. — This is Theorem 2.3.1 of [24].

2.1.5 Proposition (Rigidity). — If f : E → E′ is a homomorphism of

elliptic curves over a sheaf S there is a unique decomposition S = qn≥0S(n)

with the property that f×S S(0) is the zero map and such that f×S S(n) is finite

locally free of degree n for n ≥ 1. In particular, if f, g : E → E′ are a pair of

homomorphisms of elliptic curves and S′ → S is a morphism of sheaves which

is surjective on geometric points then f = g if and only if f ×S S′ = g ×S S′.

Proof. — The first statement is Theorem 2.4.2 of [24]. For the second state-

ment the only if direction is clear, so assume that f ×S S′ = g×S S′. The claim

is local on S and S′ and so we may assume that they are affine schemes. If

S(0) ⊂ S and S′(0) ⊂ S′ denote the open and closed sub-schemes where f − g
and f ×S S′ − g ×S S′ are equal to the zero map respectively, then S′(0) → S

factors through S(0). However, S′(0) = S′, so that as S′ → S is surjective on

geometric points, it follows that S(0) = S.

2.1.6 Remark. — We will make much use of (2.1.5) and when doing so just

say ‘by rigidity’.

2.1.7 Proposition. — For each pair of elliptic curves E and E′ over a sheaf

S the sheaf IsomS(E,E′) is finite and unramified over S.

Proof. — The claim is local on S so we may assume that S is an affine scheme

and this is Proposition 5.3 (i) of [15].

2.1.8. Let A be a noetherian ring complete with respect to the I-adic topology

for I ⊂ A an ideal and write Spf(A) = colimn≥0 Spec(A/In+1) ⊂ Spec(A).

2.1.9 Theorem (Formal GAGA). — The functor

Ell(Spec(A))→ Ell(Spf(A)) : E/Spec(A) 7→ E×Spec(A) Spf(A)

induced by base change is an equivalence of categories.

Proof. — This is an easy application Grothendieck’s formal GAGA (in par-

ticular Corollaire 2 and Théorème 4 of [23]).
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2.1.10. The following is taken from No 2 of [16]. Let S be a locally finitely

presented Spec(C)-scheme and let f : E → S be an elliptic curve. The ana-

lytification fan : Ean → San is an analytic space over San which is smooth of

relative dimension one and proper with connected fibres. There is a canonical

exact sequence, the exponential sequence, of sheaves on the big analytic site

of Xan

0→ TZ(E)→ LieEan/San → Ean → 0

(we view LieSan/Ean as a rank one locally free sheaf of OSan-modules on the

big analytic site of S) with TZ(E) a rank two Z-local system on San. Denote

by Lat(San) the category of pairs (T ⊂ V ) where V is a locally free rank one

OSan-module and T ⊂ V is a rank two Z-local system which is fibre-wise over

San discrete in V .

2.1.11 Proposition. — The functor

Ell(S)→ Lat(San) : E/S 7→ (TZ(E/S) ⊂ LieEan/San)

is an equivalence of categories.

2.1.12. Let p be a rational prime and S a p-adic sheaf (i.e. a sheaf over

Spf(Zp) = colimn Spec(Z/pn+1)). A p-divisible group over S is an sheaf of

groups F → S such that the multiplication map p : F → F is representable,

finite locally free and faithfully flat and such that colimn ker(pn) = F. If E is

an elliptic curve over S we write E[p∞] for the p-divisible group colimn E[pn].

Let S0 → S be a nilpotent closed immersion of p-adic sheaves and consider

the category D(S,S0) whose objects are triples (E/S0,F/S, ρ) with

(i) E0/S0 an elliptic curve,

(ii) F/S is a p-divisible group, and

(iii) ρ : E0[p∞]
∼−→ F×S S0 an isomorphism of p-divisible groups,

and whose morphisms (E0/S0,F/S, ρ) → (E′/S0,F
′, ρ′) are pairs (f, g) where

f : E → E′ is a morphism of elliptic curves, g : F → F′ is a morphism of

p-divisible groups such that

(g ×S S0) ◦ ρ = ρ′ ◦ f |E[p∞].

2.1.13 Theorem (Serre-Tate). — The functor

Ell(S)→ Dp(S,S0) : E/S 7→ (E×S S0/S0,E[p∞]/S, idE[p∞]|S0)

is an equivalence of categories.

Proof. — A short argument using (2.1.2) reduces us to the case where S is an

affine scheme and this case is the content of the Appendix of [19].
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2.1.14. Let S be a Dedekind scheme, i.e. a one dimensional, regular and irre-

ducible scheme. Let f : Spec(K)→ S be its generic point and let E/Spec(K).

2.1.15 Theorem (Néron models). — The functor X/S 7→ E(X×SSpec(K))

on smooth schemes over S is representable by a smooth, one dimensional group

scheme NérS(E)/S. Moreover, if S′ → S is an étale map of Dedekind schemes

and Spec(K′)→ S′ is the generic point of S′ then

NérS(E)×S S′ = NérS′(E×Spec(K) Spec(K′)).

Proof. — Representability of the functor is Theorem 3 §1.4 Chapter 1 of [9]

and compatibility with étale base change is Proposition 2 (b) §1.2 of [9].

2.1.16 Theorem. — Let L/Q be a finite extension, v a place over Qsep lying

over the prime p of OL with residue characteristic p > 0 and let E/L be an

elliptic curve. Then NérOL,p
(E)→ Spec(OL,p) is an elliptic curve if, for some

prime l 6= p, the action of the inertia group Iv ⊂ G(Qsep/L) on E[l∞](Qsep) is

trivial.

Proof. — This follows from Theorem 1 of [31].

2.2. Elliptic curves with complex multiplication

In this section we define families of elliptic curves with complex multiplica-

tion by the ring of integers OK of an imaginary quadratic field K or, for short,

CM elliptic curves. We give analogues for CM elliptic curves of several of the

results of (1.2) given for Lubin–Tate O-modules. In particular, we consider

the moduli stack MCM of CM elliptic curves and show that the stack C L OK

of rank one OK-local system acts on MCM.

2.2.1. For the remainder of this chapter we fix an imaginary quadratic field

K = Q(
√
−d) for d ∈ N square free and with ring of integers OK. We note that

K has only one archimedian place ∞ and so (K,∞) satisfies the conditions

of (1.4.1) and we shall make use and notation (and in later sections theory)

set up in §1.4 of Chapter 1. As K∞
∼−→ C is algebraically closed every finite

extension of K is totally split at infinity so that K∞ = Kab, although we shall

continue to use the notation K∞. The unit group O×K is finite and is equal

to {±1} unless K = Q(µn) for n = 4, 6 in which case O×K = µn. The unique

non-trivial automorphism of K/Q is denoted by a 7→ a. We shall be working

solely in the category ShOK
and so by a sheaf S we will mean a sheaf over

Spec(OK). In particular, to simplify some of the notation we will write X×Y

for the product X×Spec(OK) Y in ShOK
.
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2.2.2. An elliptic curve with complex multiplication by OK over S, or for

short a CM elliptic curve over S, is an elliptic curve E→ S (2.1.1) equipped an

OKS
-module structure which is strict with respect to the morphism OKS

→ OS

coming from the structure map S → Spec(OK) (cf. (A.2.4)). A morphism

of CM elliptic curves over S is just a homomorphism of OKS
-modules. For

a ∈ OKS
(S) we write [a]E : E → E, or just a : E → E, for the corresponding

endomorphism (in particular for a ∈ OK ⊂ OKS
(S)).

Finally, we write CM(S) for the category of CM elliptic curves over a sheaf

S and we write MCM for the stack over ShOK
whose fibre over S is the category

of CM elliptic curves over S together with their isomorphisms.

2.2.3 Proposition. — For any CM elliptic curve E/S the morphism

OKS
→ EndOK

S (E)

is an isomorphism.

Proof. — The claim is local on S so may assume that S is an affine scheme.

That OKS
→ EndOK

S (E) is injective follows from the fact that both ZS ⊂ OKS
and ZS → EndS(E) are monomorphisms. By Corollary 1, §4 of [31] the map

OKS
→ EndOK

S (E) is an isomorphism when evaluated on any closed point

Spec(k) → S. Therefore, if f : E → E is any morphism, for each closed point

h : Spec(k)→ S there is an element αh ∈ OK such that (f − [αh]E)|Spec(k) = 0

and by rigidity (2.1.3) there is an open (and closed) neighbourhood Spec(k)→
U ⊂ S such that (f − [αh]E)|U = 0. It follows that

OKS
→ EndOK

S (E)

is an epimorphism and so is an isomorphism.

2.2.4 Proposition. — Let E/S be a CM elliptic curve and L /S a rank one

OK-local system. Then E⊗OK
L is a CM elliptic curve over S.

Proof. — The claims are all local on S so we may assume that S is an affine

scheme. It follows from (A.2.6) that, at least locally on S, E ⊗OK
L is rep-

resentable by a proper, smooth, geometrically connected group scheme. It

follows from (A.2.3) that, when this is the case, the Lie algebra of E ⊗OK
L

is locally free of rank one so that the relative dimension of E ⊗OK
L → S is

also one. Therefore E⊗OK
L is, locally on S, an elliptic curve so that it is in

fact an elliptic curve over S as the moduli stack of elliptic curves is a stack.

Finally, E ⊗OK
L has an obvious structure of an OKS

-module and it follows

from (A.2.3) that it is strict.

2.2.5 Remark. — By (2.2.4) above we find a functor

MCM × C L OK
→MCM : (E/S,L /S) 7→ E⊗OK

L /S
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which we may view as defining an action of C L OK
on MCM. We will show

later (see (2.4.4)) that, as with Lubin–Tate O-modules, this makes MCM a

torsor under C L OK
.

2.2.6 Corollary. — For each pair L ,L ′ of rank one OK-local systems over

S and each pair E,E′ of CM elliptic curves over S the natural map

HomOK
S (E,E′)⊗OK

HomOK
S (L ,L ′)→ HomOK

S (E⊗OK
L ,E′ ⊗OK

L ′)

is an isomorphism.

Proof. — This follows from (A.2.3).

2.2.7 Remark. — The isomorphism of (2.2.6) together with (2.2.3) gives the

particularly simple formula when E = E′ and L = OKS
and L ′ = LS:

LS
∼−→ HomOK

S (E,E⊗OK
L) : l 7→ idE ⊗OK

l.

2.2.8. For each integral ideal a ⊂ OK we write

ia : E→ E⊗OK
a−1

for the homomorphism induced by the inclusion OK → a−1. We define the

a-torsion in E to be E[a] = ker(ia). We have E[a] = ∩a∈a ker(a) so that

E[a] = ker(a) if a = (a) is principal.

2.2.9 Proposition. — The homomorphism ia : E → E ⊗OK
a−1 is finite

locally free of degree Na.

Proof. — If S is empty or if a = OK the claim is obvious so we assume that

S 6= ∅ and that a 6= OK. Using (2.2.7), the morphism ia is equal to the zero

map only if S = ∅, and it is an isomorphism if and only if a = OK or S = ∅.
Therefore, as a 6= OK and S 6= ∅, the morphism ia is finite locally free of degree

greater than one.

As tensoring with rank one OK-local systems is exact (A.2.2) the kernel of

ia⊗OK
b−1 is E[a]⊗OK

b−1 and as OK/a⊗OK
b−1 ∼−→ OK/a (non-canonically)

for all pairs of integral ideals a, b we have

E[a]⊗OK
b−1 ∼−→ E[a].

Therefore deg(ia ⊗OK
b−1) = deg(ia) and

deg(iab) = deg((ib ⊗OK
b−1) ◦ ib) = deg(ia) deg(ib).

As Nab = NaNb and deg(iab) = deg(ia) deg(ib) we may assume that a = p is

a prime ideal in which case we find

deg(ip) deg(ip) = deg(ipp) = deg([Np]E) = Np2.

If p = p then deg(ip)
2 = Np2 and so deg(ip) = Np and if p 6= p then, as Np is

prime and as both deg(ip), deg(ip) 6= 1, it also follows that deg(ip) = Np.
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2.2.10. We associate the following sheaves of groups to E/S:

(i) For each maximal ideal p ⊂ OK the p-divisible group of E is the ind-finite

locally free group scheme E[p∞] := colimn E[pn]. It is a limn OK/p
n

S
-

module.

(ii) The torsion subgroup of E/S is

E[tors] := colim
a

E[a] =
⊕
p

E[p∞].

It is a lima OK/aS
-module.

(iii) The formal group of E/S is Ê := colimk Inf
(k)
S (E) (cf. A.1.2). It is a strict

formal OKS
-module of dimension one.

2.2.11 Proposition. — Let E/S be a CM elliptic curve and p ⊂ OK a prime

ideal. Then

(i) p is invertible on S if and only if E[p] is finite and étale over S. In

this case, E[p∞] is étale over S and is locally isomorphic to the constant

limn OK/p
n

S
-module

colim
n

p−n/OKS
= Kp/OKpS

,

and

(ii) p is locally nilpotent on S if and only if E[p∞] = Ê. In this case, E[p∞]

is a Lubin–Tate OKp-module over S.

Proof. — The claims are true if and only if they are locally on S and so we

may assume that S is an affine scheme.

(i) As ipn is finite locally free of degree Npn (in particular, faithfully flat)

its kernel E[pn] is étale over S if and only if the morphism E → E ⊗OK
p−n

is étale, or equivalently, induces an isomorphism LieE/S → LieE⊗OK
p−1/S =

LieE/S ⊗OK
p−1 and this is true if and only if p is invertible on S.

For the second claim we may, after localising S, assume that E[p∞] is con-

stant and hence that E[pn] is constant for all n ≥ 0. For each n ≥ 0 let En be

a finite OK-module with E[pn]
∼−→ EnS

for n ≥ 0. For n ≥ 0, En is an OK/p
n-

module and the pn-torsion of colimn En is equal to En. As #En+1 = Npn+1

if En+1 is not a free rank one OK/p
n+1-module it must consist of pn-torsion

and therefore En+1 ⊂ En but #En = Npn so that this is impossible. It follows

that for each n ≥ 0 the OK/p
n-module En is free of rank one and the inclu-

sions En → En+1 identify En with the pn-torsion of En+1. Therefore, we may

fix isomorphisms En
∼−→ p−n/OK for all n ≥ 0 with the property that the

inclusions En ⊂ En+1 become the natural inclusions p−n/OK ⊂ p−n−1/OK.

Thus

E[p∞]
∼−→ colim

n
p−n/OKS

.
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(ii) First assume that Ê = E[p∞]. Then S→ Spec(OK) factors through

Spf(OKp) = colim
n

Spec(OK/p
n+1)→ Spec(OK)

if and only if S × Spec(OK[p−1]) = ∅. Thus we may assume that S = S ×
Spec(OK[p−1]) and show that it is empty. By (i) the sheaf Ê = E[p∞] is

étale over S. In this case it follows that, for all k ≥ 0, the scheme Inf
(k)
S (E)

is unramified over S as it is a sub-scheme of the étale scheme Ê = E[p∞].

Therefore, the morphism defining the zero section S → Inf
(k)
S (E) is both a

nilpotent immersion and an open immersion which is possible if and only if

S = Inf
(k)
S (E) and this is possible if and only if S = ∅.

Conversely, assume that S→ Spec(OK) factors through Spf(OKp) ⊂ Spec(OK)

and write Ê[pn] = ker(Ê→ Ê⊗OK
p−n). As S is affine it follows that p is nilpo-

tent on S and as the action of OKS
on Ê is strict it follows that

colim
n

Ê[pn] = Ê

(just as in the proof of (ii) of (1.2.5)). In particular, Ê ⊂ E[p∞] and the strict

OKS
-module structure on Ê extends uniquely to a strict limn OK/p

n
S
-module

structure.

We are now reduced to showing that for each r ≥ 0 the zero section S →
E[pr] is a nilpotent immersion as this will give E[pr] ⊂ Ê. As S×Spec(Fp)→ S

is a nilpotent immersion, we may replace S by S× Spec(Fp) and assume that

S has characteristic p. From (iii) of (1.2.5) we find closed immersions

ker(FrNpr

Ê/S
) ⊂ Ê[pr] ⊂ E[pr].

But, as Ê is a smooth formal group of dimension one, ker(FrNpr

Ê/S
) is finite locally

free of rank Npr, as is E[pr]. Therefore the closed immersion

ker(FrNpr

Ê/S
) ⊂ E[pr]

is an isomorphism. It follows that S→ E[pr] is a nilpotent immersion, so that

E[pr] ⊂ Ê, and therefore

Ê = E[p∞].

This proves the first claim. For the second, the sheaf of groups Ê = E[p∞] is

a strict formal ÔKpS
-module of dimension one. Moreover, as Ê = E[p∞] we

have

ker(ip : Ê→ Ê⊗OK
p−1) = E[p]

so that

ip : Ê→ Ê⊗OKp
p−1

is finite locally free of degree Np. This is precisely the definition of a Lubin–

Tate OKp-module (1.2.6).

2.2.12 Corollary. — Let E/S be a CM elliptic curve.
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(i) The morphism IsomOK
S (E[a],OK/aS

) → S is affine and étale, factors

through S[a−1] = S × Spec(OK[a−1]) ⊂ S and defines an affine étale

cover

IsomOK
S (E[a],OK/aS

)→ S[a−1].

(ii) If P ⊂ IdOK
is any set of ideals which do not admit a common divisor

the family

(IsomOK
S (E[a],OK/aS

)→ S)a∈P

is an affine étale cover of S.

Proof. — (i) If there exists an isomorphism ET[a]
∼−→ OK/aT

over some

affine S-scheme T then ET[a] is étale, so that by (i) of (2.2.11) the map

T → S factors through the affine étale sub-scheme S[a−1] ⊂ S. It follows

that IsomOK
S (E[a],OK/aS

) → S factors through S[a−1] and so base changing

along S[a−1]→ S we may assume a is invertible on S.

Applying (i) of (2.2.11) to the prime power divisors of a we find that E[a]

is locally isomorphic to a−1/OKS
which is isomorphic to OK/aS

. This shows

that

IsomOK
S (E[a],OK/aS

)→ S

is an epimorphism so that by descent, to show that it is finite and étale, we

may assume that E[a] = OK/aS
. In this case we have

IsomOK
S (OK/aS

,OK/aS
) = (OK/a)×

S

and the claim is clear.

(ii) The hypothesis on P implies that (S[a−1]→ S)a∈P is a cover of S so that

this follows from (i).

2.2.13 Corollary. — For each n ≥ 0 there is a unique isomorphism of func-

tors

νpn : −⊗OK
p−n

∼−→ FrNpn∗(−)

on MCM×Spec(Fp) such that for all CM elliptic curves E over characteristic

p-sheaves S the diagram

E
FrNpn

E/S

##

ipn

zz

E⊗OK
p−n

νpn

∼
// FrNp∗(E)

commutes.

Proof. — The two homomorphisms ipn and FrNpn

E/S are finite locally free of

degree Npn so we need only show that their kernels are equal. As p is nilpotent

on S, we have Ê = E[p∞] and Ê is a Lubin–Tate OKp-module by (ii) of (2.2.11)

so that by (1.2.9) we find

ker(FrNpn

E/S) = ker(FrNpn

Ê/S
) = Ê[pn] = E[pn] = ker(ipn).
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2.2.14 Remark. — The above (2.2.13) is the first indication that the moduli

stack MCM should admit a Λ-structure.

2.2.15 Corollary. — Let f : E → E′ be a homomorphism of CM elliptic

curves over S. Then there is a unique decomposition S = qa⊂OK
S(a) such fS(0)

is the zero map and such that ker(fS(a)
) = ES(a)

[a] for all (0) 6= a ⊂ OK.

Proof. — By rigidity we may decompose S as S(0) q Sisog where fS(0)
is the

zero map and where fSisog is finite locally free of positive degree. Thus we may

replace S by Sisog and assume that f is finite locally free. Then ker(f) ⊂ E[tors]

and

ker(f) =
⊕
p

ker(fp)

where fp : E[p∞]→ E′[p∞] is the restriction of f to the p-divisible groups. As

ker(f) is finite locally free so is ker(fp) for all prime ideals p.

The claim is local so we may reduce to the case where S = Spec(A) is an

affine scheme and, by passage to the limit, to when S finitely presented over

Spec(OK). As S is noetherian it admits a finite cover by connected affine

schemes and so we may assume that S is connected. In this case, the finite

locally free group schemes ker(fp) have constant degree and we are reduced to

showing that, locally on S, there exists an integer n ≥ 0 such that ker(fp) =

E[pn].

We continue to localise S and so assume that S = Spec(A) for A a lo-

cal noetherian ring with maximal ideal I and by descent that A is I-adically

complete. As E and E[pn] and ker(fp) are all proper over S to check that

ker(fp) = E[pn] for some n we may, by Grothendieck’s formal GAGA, replace

S by Spec(A/Ir) for each r ≥ 0 and assume that S = Spec(A) where A is an

artinian local ring. If p is invertible in A then E[p∞] is locally isomorphic to

the constant group scheme

Kp/OKpS

by (2.2.11), from this and the corresponding fact for Kp/OKp , we see that

any finite locally free OKS
-sub-module of E[p∞] is of the form E[pn] for some

n ≥ 0. On the other hand, if p is nilpotent in A, then ker(fp) is the kernel of

the homomorphism fp : E[p∞] → E′[p∞] of Lubin–Tate OKp-modules and so

the claim follows from (1.2.18).

2.3. Complex and p-adic bases

In this section we give CM analogues of the classification of elliptic curves

over complex schemes in terms of lattices, and of the Serre-Tate theorem. We

use this to show there exists a CM elliptic curve E → Spec(OKsep) (2.3.3),
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that deformations of CM elliptic curves over p-adic bases always exist and are

unique (2.3.6).

2.3.1. Let us first consider complex bases. We fix a homomorphism OK → C

so that we may view Spec(C) as a Spec(OK)-scheme. Let S be a locally

finitely presented Spec(C)-scheme and E/S a CM elliptic curve. Consider the

exponential sequence associated to the analytification Ean/San (cf. (2.1.10))

0→ TZ(E/S)→ LieEan/San → Ean → 0.

The strictness of the OKS
-action on E implies that the homomorphism

LieEan/San → Ean

is a homomorphism of OKSan-modules. This makes the rank two ZSan-local sys-

tem TZ(E/S) a rank one OK-local system, which we shall denote by TOK
(E/S),

and the homomorphism

TOK
(E/S)⊗OKSan

OSan → LieEan/San

is now an isomorphism. As the automorphism sheaf of any rank one OK-local

system over S or San is just the constant sheaf associated to the finite group

O×K (from which one sees that every OK-local system over S or San is just a

sum of finite étale S-schemes, or finite covering spaces of San) by GAGA the

functor sending a rank one OK-local system on S to the corresponding rank

one OK-local system on San is an equivalence. Therefore:

2.3.2 Proposition. — The functor

E/S 7→ TOK
(E/S)

is an equivalence between the category of CM elliptic curves E/S and the rank

one OK-local systems over S.

Proof. — This follows from (2.1.11) and the remarks above.

2.3.3 Corollary. — There exists a CM elliptic curve E over Spec(OKsep).

Proof. — By (2.3.2) we see that there exists a CM elliptic curve E/Spec(C).

Writing Spec(C) = limλ Spec(Aλ) as a filtered inverse limit of finite type

affine Spec(K)-schemes by passage to the limit we find a CM elliptic curve

Eλ/Spec(Aλ) for some λ. As Spec(Aλ) is of finite type over Spec(K) it admits

a closed point Spec(L)→ Spec(Aλ) with L/K finite and we find a CM elliptic

curve Eλ ×Spec(Aλ) Spec(L) over Spec(L).

We now show (essentially following the arguments of [31] only for the sake

of completeness) that for any CM elliptic curve E → Spec(L) over a finite

extension L/K there is a finite extension L′/L such that E ×Spec(L) Spec(L′)

has good reduction everywhere. As E has bad reduction at only finitely many

primes, it is enough to show that for each prime p of L there is a finite extension

L′/L such that E ×Spec(L) Spec(L′) admits good reduction at all primes of L′
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over p, as then E will obtain good reduction over the compositum of these

finitely many fields.

So fix a prime p lying over the rational prime p and let ` 6= p be another

rational prime. Let ρ` : G(Lsep/L)ab = G(Lab/L) → (OK ⊗Z Z`)
× be the

character defining the OK ⊗Z Z`-linear action of G(Lsep/L) on

E[`∞](Spec(Lsep))
∼−→ OK ⊗Z Q`/Z`.

First we claim that for each place v of Lsep lying over p the restriction of ρ`
to the inertia group Iv ⊂ G(Lsep/L) at v has finite image and that this image

is independent of v. As the target of ρ` is commutative and as the image of

Iv(L
sep/L) in G(Lsep/L) = G(Lab/L) is the inertia subgroup Ip ⊂ G(Lab/L) at

p, which is independent of v, it is enough to show that ρ`(Ip) is finite. But it

is well known that Ip admits an open subgroup of finite index which is pro-p

and that (OK⊗Z Z`)
× admits an open subgroup of finite index which is pro-`.

Therefore, as ρ` is continuous and ` 6= p the image of the inertia group ρ`(Ip)

must be finite. It now follows that there is an integer n ≥ 0 with the property

that

ρ`(Ip)→ (OK ⊗Z Z`)
× → (OK ⊗Z Z/`n)×

is injective. Taking L′ = L(E[`n]), the action of the inertia group Iv(L
sep/L′) ⊂

G(Lsep/L′) at any place v lying over p on E′[`∞](Spec(Lsep)) = E′[`∞](Spec(Lsep))

is trivial and we now apply (2.1.16) to deduce that E′/Spec(L′) has good re-

duction at all places of L′ lying over p.

2.3.4. Now let us consider p-adic bases. Fix a prime ideal p of OK and let

S0 → S be a nilpotent thickening of p-adic sheaves and denote by Dp(S,S0)

the category whose objects are triples (E0/S0,F/S, ρ) where

(i) E/S0 is a CM elliptic curve,

(ii) F/S is a Lubin–Tate OKp-module, and

(iii) ρ : F×S S0
∼−→ E[p∞] is an isomorphism of Lubin–Tate OKp-modules,

and whose morphisms (E0/S0,F/S, ρ) → (E′0/S0,F
′/S, ρ′) are given by pairs

(g0, gp) where g0 : E0 → E′0 is a homomorphism of CM elliptic curves, gp : F→
F′ is a homomorphism of Lubin–Tate OKp-modules such that ρ′ ◦ (gp×S S0) =

(g0|E[p∞]) ◦ ρ. There is an obvious functor

CM(S)→ Dp(S0,S) : E/S 7→ (E×S S0,E[p∞], idE[p∞]×SS0
).

The following is the theorem of Serre-Tate (2.1.13) adapted for CM elliptic

curves.

2.3.5 Proposition. — The functor CM(S)→ Dp(S0, S) is an equivalence of

categories.

Proof. — Let p be the rational prime lying under p. We will show that to

each object (E0/S0,F/S, ρ) of Dp(S0,S) (resp. morphism) one can functori-

ally define a element of Dp(S0,S) (resp. morphism) (cf. (2.1.12)). If p = p
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then this is clear as E0[p∞] = E[p∞]. On the other hand if p 6= p then

E0[p∞] = E0[p∞] ×S0 E0[p∞] and E0[p∞] is étale over S0 so that there is a

unique deformation of E0[p∞] along S0 → S and the product over S of this

deformation with F will give the desired deformation of E0[p∞]. Regarding

morphisms (g0, gp) the restriction g0|E[p∞] lifts uniquely and the product of

this with gp defines the map on morphisms.

In both cases this defines a functor Dp(S0,S) → Dp(S0, S) and by the clas-

sical Serre-Tate theorem a functor Dp(S0, S) → Ell(S). By functoriality, if

E/S is the image of (E0/S0,F/S, ρ) then E/S admits the structure of an OKS
-

module (deforming the corresponding structure on E0/S0). Moreover, the

action of OKS
on the Lie algebra of E/S is strict as we have identifications of

OKS
-modules

LieE/S = LieE[p∞]/S = LieE[p∞]/S = LieF/S

and the action of OKS
on F is strict. In particular, the functor Dp(S0, S) →

Ell(S) factors as

Dp(S0,S)→ CM(S)

and it is easily seen to be quasi-inverse to CM(S)→ Dp(S0, S).

2.3.6 Corollary. — If S0 → S is a nilpotent immersion of p-adic sheaves

the functor

CM(S)→ CM(S0) : E/S 7→ E×S S0/S0

is an equivalence of categories.

Proof. — This follows from (2.3.5) combined with (1.2.17).

2.3.7 Corollary. — Let S be a p-adic affine scheme and let E/S be a CM

elliptic curve. Then there exists a affine scheme S̃, flat over Spec(OK), a

morphism S→ S̃, and a CM elliptic curve Ẽ/S̃ such that Ẽ×
S̃

S
∼−→ E.

Proof. — By passage to the limit we may assume that S = Spec(A) with

A a finite type OK-algebra. We then choose a surjection A′ → A where

A′ is a flat OK-algebra. Letting I be the kernel of A′ → A we write S̃ =

Spec(limn A′/In) = Spec(Â′), S̃n = Spec(A′/In) and S̃∞ = colimn Spec(A′/In).

We will show that there exists a CM elliptic curve Ẽ/S̃ with Ẽ ×
S̃

S
∼−→ E

which, as S̃ = Spec(Â′) is flat over Spec(OK), will prove the claim.

For each n ≥ 0 there is a unique Ẽn/S̃n equipped with an isomorphism

Ẽn ×S̃n
S
∼−→ E by (2.3.6). Therefore there is a unique CM elliptic curve Ẽ∞

over the ind-scheme S̃∞ = colimn S̃n with Ẽ∞ ×S̃∞
S = E. By (2.1.8) there is

a unique elliptic curve Ẽ over S̃ = Spec(Â′) with Ẽ×
S̃

S = E and moreover it

admits an action of OKS
compatible with that on Ẽn over S̃n which (taking n

large) shows that the action is strict so that Ẽ/S̃ is a CM elliptic curve.
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2.4. Isogenies and the action of C L OK
on MCM

In this section we continue the study of the action of C L OK
on MCM. We

show that all pairs of CM elliptic curves over a fixed base are locally isogenous

(2.4.1) and from this deduce that the action of C L OK
on MCM makes it a

torsor (2.4.4).

2.4.1 Lemma. — Let E,E′/S be a pair of CM elliptic curves. Then the

family

(IsomOK
S (E,E′ ⊗OK

a−1)→ S)a∈IdOK

is a finite étale cover of S.

Proof. — The claim is local so we may assume that S is an affine scheme and

by passage to the limit that S is finitely presented over Spec(OK). For every

pair of CM elliptic curves E,E′/S the inclusion

IsomOK
S (E,E′)→ IsomS(E,E′)

is easily seen to be a closed immersion and so it follows from (2.1.7) that

IsomOK
S (E,E′)→ S is finite and unramified. Therefore, for each integral ideal

a ∈ IdOK
the sheaf IsomOK

S (E,E′ ⊗OK
a−1) is finite and unramified over S. It

follows from (2.3.6) that the maximal open sub-scheme of IsomOK
S (E,E′ ⊗OK

a−1) which is étale over S contains all of the special fibres and is therefore equal

to all of IsomOK
S (E,E′⊗OK

a−1). As the morphisms (IsomOK
S (E,E′⊗OK

a−1)→
S)a∈IdOK

are finite étale this family forms a cover of S if and only if it is a cover

after base change to each generic point of S. So we way assume that S is either

flat over Spec(OK) (if a generic point has characteristic 0) or that S is p-adic

for some prime p (if a generic point has characteristic p). Let us reduce the

second case to the first and assume that S is p-adic.

Applying (2.3.7) to E and E′, then taking the product of the flat Spec(OK)-

schemes over which E and E′ can be extended, we find a flat Spec(OK)-scheme

S̃, a morphism S→ S̃ and a pair of CM elliptic curves Ẽ and Ẽ′ over S̃ whose

pull-backs to S are isomorphic to E and E′. We now see that the claim we

wish to prove is true for E,E′/S if it is true for Ẽ, Ẽ′/S̃. As the generic points

of S̃ are all of characteristic 0, we have reduced the second case to the first

and we may assume that S = Spec(F) where F is a field of characteristic 0.

By passage to the limit we may assume that F has finite transcendence

degree over K, that there is a morphism F → C and by base change that

F = C. The claim now follows from (2.3.2), the fact that all OK-local systems

over Spec(C) are constant, and the fact that if L and L′ are two rank one

OK-modules there always exists some a ⊂ OK and an isomorphism L′
∼−→

L⊗OK
a−1.

2.4.2 Proposition. — For each pair E,E′/S of CM elliptic curves over S

the sheaf HomOK
S (E,E′) is a rank one OK-local system and the evaluation
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homomorphism

E⊗OK
HomOK

S (E,E′)→ E′

is an isomorphism.

Proof. — The claim is local and by (2.4.1) the set of S-sheaves

(IsomOK
S (E,E′ ⊗OK

a−1)→ S)a∈IdOK

is a finite étale cover, so replacing S with any one of them we may assume

that E′ = E ⊗OK
a−1 for some integral ideal a. Composing the evaluation

homomorphism with idE ⊗OK
i, where i : a−1

S
∼−→ HomOK

S (E,E ⊗OK
a−1) is

the isomorphism of (2.2.6), the resulting map

E⊗OK
a−1 ∼−→ E⊗OK

HomOK
S (E,E⊗OK

a−1)→ E⊗OK
a−1

is an isomorphism (in particular it is the identity) and so the second map is

an isomorphism and we are done.

2.4.3 Corollary. — Let E,E′/S be a pair of CM elliptic curves. Then E and

E′ are isomorphic if and only if they are isogenous and locally isomorphic.

Proof. — The only if direction is clear. Conversely, let f : E → E′ be an

isogeny and assume that E and E′ are locally isomorphic. As the cover

qa⊂OK
S(a) = S in (2.2.15) is by open and closed sub-sheaves, E and E′ are

isomorphic over S if and only if they are after base change to each S(a).

Therefore we may assume that ker(f) = E[a] = ker(ia), so that f factors

as E → E ⊗OK
a−1 ∼−→ E′. Now as E and E′

∼−→ E ⊗OK
a−1 are locally

isomorphic it follows that OKS
and a−1

S are locally isomorphic. Any such

and isomorphism is locally constant from which it follows that there exists an

isomorphism a−1 ∼−→ OK and we get

E′
∼−→ E⊗OK

a−1 ∼−→ E.

2.4.4 Theorem. — The functor

MCM × C L OK
→MCM ×MCM : (E,L ) 7→ (E,E⊗OK

L )

is an equivalence of stacks and MCM is locally (over Spec(OK)) equivalent to

C L OK
.

Proof. — The functor in question is essentially surjective as, given any pair

(E/S,E′/S) ∈MCM(S)×MCM(S), by (2.4.2) we have

(E/S,E′/S)
∼−→ (E/S,E⊗OK

HomS(E,E′)/S).

Full faithfulness is the bijectivity of the map

IsomOK
S (E,E′)×IsomOK

S (L ,L ′)→ IsomOK
S (E,E′)×IsomOK

S (E⊗OK
L ,E′⊗OK

L ′).
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If IsomOK
S (E,E′) = ∅ this is clear. If IsomOK

S (E,E′) 6= ∅ we may assume that

E = E′ and instead show that

IsomOK
S (L ,L ′)→ IsomOK

S (E⊗OK
L ,E⊗OK

L ′)

is bijective but this follows from (2.2.6).

For the second statement, if E/Spec(Osep
K ) is any CM elliptic curve (2.3.3)

the functor

C L OK
× Spec(OKsep)→MCM × Spec(OKsep)

sending a rank one OK-local system L over a Spec(Osep
K )-sheaf p : S →

Spec(OKsep) to p∗(E)⊗OK
L is the desired local equivalence.

2.4.5 Remark. — One might ask whether, as in the analogous situation of

Lubin–Tate O-modules (1.2.16), there exists a CM elliptic curve over E /Spec(OK)

inducing a trivialisation of the C L OK
-torsor MCM, i.e. an equivalence of

stacks:

C L OK

∼−→MCM : L /S 7→ ES ⊗OK
L /S

We shall show later (see (4.2.5)) that in general this is not the case (and for

non-trivial reasons).

2.4.6 Corollary. — Let E and E′ be a pair of CM elliptic curves over S and

assume that a is invertible on S. Then the homomorphism

HomOK
S (E,E′)→ HomOK

S (E[a],E′[a])

is an epimorphism.

Proof. — We may work locally on S and so assume that E′
∼−→ E ⊗OK

b−1.

We may find a k ∈ K× such that b(k) is prime to a and using the isomorphism

k : b
∼−→ b(k) we may assume b is prime to a. In this case, the restriction of ib

to the a-torsion defines an isomorphism E[a]
∼−→ E[a]⊗OK

b−1 which, as E[a]

and E[a]⊗OK
b−1 are locally isomorphic to OK/aS

, induces an isomorphism

OK/aS

∼−→ HomS(E[a],E[a]⊗OK
b−1) : a 7→ a · ib

and it follows that

HomOK
S (E,E⊗OK

b−1)→ HomOK
S (E[a],E[a]⊗OK

b−1)

is an epimorphism as the image contains ib.
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2.5. The global reciprocity map and CM elliptic curves

We now consider CM elliptic curves over Spec(F) where F is a field of

arbitrary characteristic. First, we define a homomorphism [−]F from the Ga-

lois group G(Fsep/F) into a certain class group (which depends only on the

characteristic of the field F) (2.5.1). We then prove a relation between this

homomorphism [−]F and the character ρE/F defining the action of G(Fsep/F)

on the torsion of a CM elliptic curve E/Spec(F) (2.5.4). Moreover, we show

the character ρE/F determines E/Spec(F) upto isogeny (2.5.7) and we use the

homomorphism [−]F to classify exactly which characters ρ of G(Fsep/F) are

of the form ρE/F for some CM elliptic curve E/Spec(F) (2.5.8). In (2.5.9) we

compute the homomorphisms [−]F when F = K, F = Kp and F = Fp for p a

prime. In particular, for F = K the homomorphism [−]K takes the form

[−]K : G(Ksep/K)→ CLOK,∞

and we show that for σ ∈ G(Ksep/K) we have

θK([σ]K) = σ|K∞ (2.5.0.1)

where θK : CLOK,∞ → G(K∞/K) is reciprocity map (1.4.7.2). This fact is, at

least in spirit, equivalent to the main theorem of complex multiplication (see

Theorem 5.4 of [33]). The method we use to derive this fact is quite similar

to (and in fact reliant on) the method used to prove (1.2.20) for Lubin–Tate

O-modules in Chapter 1. Finally, we use these results to derive a sharpening

of the criterion of good reduction adapted to CM elliptic curves (2.5.12).

The results of this section are, at least when F is a finite extension of K,

probably more or less known when translated into the language of algebraic

Hecke characters though the proofs we give are, to the best of the author’s

knowledge, original. We would like to emphasise that the rather abstract

approach taken – which eschews Hecke characters – works for all fields F

simultaneously and allows for more conceptual proofs.

2.5.1. Let F be a field over OK with separable closure Fsep, let S = Spec(Fsep)

and let f ∈ IdOK
be invertible on Spec(F). By (2.3.3) there exists a CM elliptic

curve E/S. Moreover, if E′/S is another CM elliptic curve then there exists

a rank one projective OK-module L and an isomorphism f : E⊗OK
L
∼−→ E′.

Of course, we could take L = HomOK
(E,E′) and f the evaluation map, but

for what follows it will be more useful to work with arbitrary modules L and

isomorphisms f : E⊗OK
L
∼−→ E′.

In particular, for each σ ∈ G(Fsep/F) there is a rank one projective OK-

module Lσ and an isomorphism

fσ : E⊗OK
Lσ

∼−→ σ∗(E).
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This isomorphism, restricted to the S = Spec(Fsep)-points of the f-torsion, is

then given by

E[f](S)⊗OK
Lσ

E[f](σ)⊗λσ−→ E[f](σ!(S)) = σ∗(E)[f](S)

for a unique level-f structure λσ : Lσ → OK/f on Lσ. It is clear from this

construction that the class

[σ]F,f := (Lσ, λσ) ∈ CL
(f)
OK

is independent of the choice of Lσ and the isomorphism fσ : E ⊗OK
Lσ

∼−→
σ∗(E). Moreover, as every other CM elliptic curve E′/S is of the form E⊗OK

a

for some ideal a, having chosen Lσ and an isomorphism fσ : E ⊗OK
Lσ

∼−→
σ∗(E), the map fσ ⊗OK

a defines an isomorphism

(E⊗OK
a)⊗OK

Lσ = E⊗OK
Lσ ⊗OK

a
fσ⊗OK

a
−→ σ∗(E)⊗OK

a = σ∗(E⊗OK
a)

which induces on the S-valued points of the f-torsion

(E⊗OK
a)[f](S)⊗OK

Lσ
(E⊗OK

a)[f](σ)⊗λσ
−→ (E⊗OK

a)[f](σ!(S)).

Therefore the class [σ]F,f is also independent of the choice of E/S.

If F→ F′ is a field extension and

res : G(F′sep/F′)→ G(Fsep/F)

denotes the restriction map then it follows easy from the definitions that

[−]F′,f = [−]F,f ◦ res. (2.5.1.1)

This relation implies that once we known [−]F for F = K, and F = Fp for each

prime ideal p, we essentially know [−]F for any field F. The computation of

the map [−]F for these values of F will be given in (2.5.9).

If τ ∈ G(Fsep/F) then the composition

E⊗OK
Lσ ⊗OK

Lτ
fσ⊗OK

idLτ−→ σ∗(E)⊗OK
Lτ

σ∗(fτ )−→ σ∗(τ∗(E))

induces on the S-points of the f-torsion the map

(E[f](σ−1◦τ ◦σ)⊗OK
λτ )◦(E[f](σ)⊗OK

λσ⊗OK
idLτ ) = E[f](τ ◦σ)⊗OK

λσ⊗OK
λτ

so that

[στ ]F,f = (Lτ ⊗OK
Lσ, λτ ⊗OK

λσ) = (Lτ , λτ )(Lσ, λτ ) = [σ]F,f[τ ]F,f.

In other words, [−]F,f : G(Fsep/F)→ CL
(f)
OK

is a homomorphism.
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2.5.2. The homomorphism of (1.4.4.1)

[−]f : (A⊗OK
K)× → CL

(f)
OK

restricted to A×OK
factors through the quotient A×OK

→ (OK/f)
× and we denote

the resulting map by the same symbol

[−]f : (OK/f)
× → CL

(f)
OK
.

Note that ker([−]f) = im(O×K → (OK/f)
×) ⊂ (OK/f)

×.

2.5.3. Now let E/F be a CM elliptic curve and denote by

ρE/F,f : G(Fsep/F)→ (OK/f)
×

the character defining the action of G(Fsep/F) on the rank one OK/f-module

E[f](S) = E[f](Spec(Fsep)), i.e.

E[f](σ) = ρE/F,f(σ) : E[f](S)→ E[f](S).

We also note for future reference that as (OK/f)
× = AutOK

(E[f](S)) is abelian

for each f it follows that the extension F(E[f])/F generated by the f-torsion

is an abelian extension of F. Moreover (as is obvious) the character ρE/F,f is

continuous, as it vanishes on the open subgroup of G(Fsep/F) fixing F(E[f]).

2.5.4 Proposition. — (i) The homomorphism [−]F,f is continuous and

(ii) if E/F is a CM elliptic curve the diagram

G(Fsep/F)

[−]F,f %%

ρ−1
E/F,f
// (OK/f)

×

[−]f
��

CL
(f)
OK

commutes.

Proof. — (i) We shall reduce this claim to the second. By passage to the limit

(applied to any CM elliptic curve over Spec(Fsep)) we may find a CM elliptic

curve E/Spec(F′) for some finite extension F′/F. If the diagram

G(Fsep/F′)
ρ−1

E/F′,f
//

��

(OK/f)
×

[−]f
��

G(Fsep/F)
[−]F,f

// CL
(f)
OK

(2.5.4.1)

commutes then, as the composition along the top and right is continuous,

it follows that [−]F,f|G(Fsep/F′) is continuous. But G(Fsep/F′) ⊂ G(Fsep/F)

is open and of finite index and CL
(f)
OK

is discrete so it follows that [−]F,f is

continuous.
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As [−]F,f = [−]F,f|G(Fsep/F′) (2.5.1.1), the commutativity of (2.5.4.1) is equiv-

alent to the commutativity of the diagram

G(Fsep/F′)

[−]F′,f &&

ρ−1
E/F′,f

// (OK/f)
×

[−]f
��

CL
(f)
OK

and so we may assume that F = F′ and instead prove (ii).

(ii) Write EFsep = E×Spec(F) Spec(Fsep) and let

dσ : EFsep → σ∗(EFsep)

be the descent isomorphism i.e. (the isomorphism coming from the fact that

E = E ×Spec(F) Spec(Fsep) descends to Spec(F)). Then dσ induces on the

S-points of the f-torsion the map

E[f](S)
ρE/F,f(σ)−1·E[f](σ)

−→ E[f](σ!(S)) = σ∗(E[f])(S)

and therefore

[σ]F,f = (OK,OK

ρE/F,f(σ)−1

−→ OK/f) = [ρE/F,f(σ)−1]f ∈ CL
(f)
OK

2.5.5 Proposition. — Let E/F be a CM elliptic curve.

(i) Let L ∈ C L OK
(Spec(F)) and

ρL /F : G(Gsep/F)→ AutOK
(L (Spec(Fsep))) = O×K

be the associated character. Then ρE⊗OK
L /F = ρE/F,fρL /F.

(ii) If τ : F→ F is any OK-linear automorphism then

ρτ∗(E)/F(σ) = ρE/F,f(τ̃
−1στ̃)

for each σ ∈ G(Fsep/F), where τ̃ denotes any extension of τ to Fsep.

Proof. — These are immediate from the definition of ρE/F,f as the character

defining the action of G(Fsep/F) on E[f](S) = E[f](Spec(Fsep)).

2.5.6. For what follows we let f ∈ IdOK
vary over the integral ideals of OK

which are invertible on Spec(F). We now take the limit over f to define the

homomorphisms [−]F, ρE/F and [−] by

[−]F := lim
f

[−]F,f : G(Fsep/F)→ lim
f

CL
(f)
OK
,

ρE/F := lim
f
ρE/F,f : G(Fsep/F)→ lim

f
(OK/f)

×,

and

[−] := lim
f

[−]f : lim
f

(OK/f)
× → lim

f
CL

(f)
OK
.
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We find immediately from (ii) of (2.5.4) that

[−]F = [ρ−1
E/F]. (2.5.6.1)

2.5.7 Proposition. — Let E,E′/F be a pair of CM elliptic curves. The

following are equivalent:

(i) ρE/F = ρE′/F,

(ii) the character ρ defining the action of G(Fsep/F) on

HomOK

Spec(F)(E,E
′)(Spec(Fsep))

is trivial,

(iii) the étale Spec(F)-scheme HomOK

Spec(F)(E,E
′) is constant,

(iv) E and E′ are isogenous.

Proof. — Let ρ : G(Fsep/F) → O×K be the character defining the action of

G(Fsep/F) on the Spec(Fsep)-valued points of the rank one OK-local system

HomOK

Spec(F)(E,E
′).

(i) implies (ii): The isomorphism

E⊗OK
HomSpec(F)OK (E,E′)

∼−→ E′

combined with (i) of (2.5.5) gives ρE′/F = ρ · ρE/F so that ρ is trivial if and

only if ρE/F = ρE′/F.

(ii) implies (iii): This is clear from the definition of ρ.

(iii) implies (iv): If HomOK

Spec(F)(E,E
′) is constant any non-zero Spec(F)-

section defines an isogeny E→ E′.

(iv) implies (i): If f : E→ E′ is an isogeny then ker(f) = E[a] = ker(ia) for

some integral ideal a by (2.2.15). Therefore E ⊗OK
a−1 ∼−→ E′ and by (i) of

(2.5.5) we then get

ρE′/F = ρE⊗OK
a−1/F = ρE/F.

2.5.8 Proposition. — Let

ρ = lim
f
ρf : G(Fsep/F)→ lim

f
(OK/f)

×

be a continuous homomorphism. Then there exists a CM elliptic curve E/F

with ρE/F = ρ if and only if the diagram

G(Fsep/F)
ρ−1

//

[−]F %%

lim
f

(OK/f)
×

[−]

��

lim
f

CL
(f)
OK

commutes.
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Proof. — The only if claim is (2.5.6.1). Conversely, by passage to the limit

there exists a CM elliptic curve E′/Spec(F′) where F ⊂ F′ is a finite extension.

As the compositions of ρE′/F′ and ρ|G(Fsep/F′) with

[−] : lim
f

(OK/f)
× → lim

f
CL

(f)
OK

coincide and ker([−]) = O×K, the difference defines a character

ρ−1
E′/F′ · ρ|G(Fsep/F′) : G(Fsep/F′)→ O×K = ker([−]) ⊂ lim

f
(OK/f)

×. (2.5.8.1)

Replacing E′ by the tensor product of E′ with any rank one OK-local system

with associated character (2.5.8.1) we may assume that ρE′/F′ = ρ|G(Fsep/F′).

Let υ ∈ G(Fsep/F′) and σ̃ ∈ G(Fsep/F) with σ̃|F′ = σ. We have by (ii) of

(2.5.5)

ρσ∗(E′)/F′(υ) = ρE′/F′(σ
−1υσ) = ρ(σ−1υσ) = ρ(υ) = ρE′/F′(υ).

Therefore ρσ∗(E′)/F′ = ρE′/F′ and by (ii) of (2.5.7) E′ and σ∗(E′) are isogenous.

For all f invertible on Spec(F) we have

[σ̃]F,f = [ρf(σ)−1]f = (OK,OK
ρf(σ)−1

→ OK/f).

This implies that, writing E′Fsep = E×Spec(F)Spec(Fsep), the CM elliptic curves

E′Fsep and σ̃∗(EFsep) are isomorphic. As σ̃|F = σ this implies that E′ and σ∗(E′)

are locally isomorphic. But E and E′ are also isogenous and so by (2.4.3) they

are isomorphic.

Now fix an integral ideal f which separates units and is also invertible on

Spec(F). As [σ̃]F,f = [ρf(σ̃)−1], and as f separates units, there is a unique

isomorphism

rσ̃ : E′
∼−→ σ∗(E′)

which on S-valued points of the f-torsion is the map

E′[f](S)
ρf(σ)−1·E′[f](σ̃)
−→ E′[f](σ!(S)) = σ∗(E)[f](S) (2.5.8.2)

where we view σ̃ as a Spec(F′)-morphism

σ̃ : σ!(S)→ S.

If τ ∈ G(F′/F) and τ̃ ∈ G(Fsep/F) satisfies τ̃ |F′ = τ then the defining

property (2.5.8.2) of the isomorphism

rσ̃τ̃ : E′
∼−→ (τ ◦ σ)∗(E′)

is also satisfied by

σ∗(rτ̃ ) ◦ rσ̃ : E′
∼−→ (τ ◦ σ)∗(E′)

and so we get

rσ̃τ̃ = σ∗(rτ̃ ) ◦ rσ̃. (2.5.8.3)
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Moreover, if σ̃ ∈ G(Fsep/F′) ⊂ G(Fsep/F) then rσ̃ induces on the S-points of

the f-torsion the map

E′[f](S)
ρf(σ̃)·E′[f](σ̃)
−→ E[f](S).

However, by definition

E′[f](σ̃) = ρE′/F′,f(σ̃)

so that rσ̃ induces on the S-valued points of the f-torsion the map

ρE′/F′,f(σ̃)−1E[f](σ̃) = ρE′/F′,f(σ̃)−1ρE′/F′,f(σ̃) = idE[f](S).

The uniqueness of rσ̃ now shows that rσ̃ = idE′ .

This combined with the relation (2.5.8.3) shows that for all σ̃ ∈ G(Fsep/F)

the isomorphism rσ̃ = rσ depends only on σ = σ̃|F, has ridF′ = idE′ and

satisfies

rστ = σ∗(rτ ) ◦ rσ.

In other words, we have Galois descent data on E′ → Spec(F′) relative to

Spec(F′) → Spec(F) and by construction the descended CM elliptic curve

E/Spec(F) has ρE/F = ρ.

2.5.9 Proposition. — (i) When F = Fp, in the notation of (1.4.7), we

have for all n ∈ Ẑ:

[FrNpn ]Fp = lim
(f,p)=OK

[p]−nf ∈ lim
(f,p)=OK

CL
(f)
OK
.

(ii) When F = Kp, we have for all σ ∈ G(Ksep
p /K):

σ|K∞ = θK([σ]Kp)

where the restriction |K∞ is along any K-linear embedding K∞ → Ksep
p .

(iii) When F = K we have for all σ ∈ G(Ksep/K):

σ|K∞ = θK([σ]K).

Proof. — (i) As G(Fsep
p /Fp) is topologically generated by FrNp, by continuity

it is enough to show that [FrNp]Fp,f = [p]−1
f for all f prime to p. Write S =

Spec(Fsep
p ), let E/S be a CM elliptic curve and consider the isomorphism

νp : E⊗OK
p−1 ∼−→ FrNp∗(E)

of (2.2.13). By the definition of νp, the composition

E
ip→ E⊗OK

p−1 ∼−→ FrNp∗(E)

is equal to the Np-power relative Frobenius of E which induces the map

E[f](S)
E[f](FrNp)−→ E[f](FrNp

! (S))
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on the S-points of the f-torsion. Therefore, the map νp induces on the S-valued

points of the f-torsion the map

E[f](S)⊗OK
p−1 E[f](FrNp)⊗f−→ E[f](FrNp

! (S))

where f is level-f structure defined by (1.4.3.1). Hence

[FrNp]Fp,f = [p−1]f = [p]−1
f .

(ii) Write T = Spec(OKsep
p

), Tp = Spec(Fsep
p ) ⊂ T, let E /T be a CM elliptic

curve, write Ep = E ×T Tp. By continuity it is enough to prove the claim for

σ ∈ W(Ksep/K) = v−1
K (Z) and by multiplicativity for σ with vK(σ) = n ≥ 0.

Let σ be such an element.

As T = Spec(OKsep
p

) admits no non-constant finite étale covers, the sheaf

IsomOK
T (E ⊗OK

p−1, σ∗(E ))

is finite and constant. Moreover, as T is connected and σ acts by FrNpn on

the residue field Fsep
p of OKsep

p
, there exists a unique isomorphism

νσ : E ⊗OK
p−n

∼−→ σ∗(E )

lifting the isomorphism

νp : Ep ⊗OK
p−n

∼−→ FrNp∗(Ep)

of (2.6.5). We now compute the action of νσ on the T-points of the f-torsion

of E /T.

First let f be prime to p. As E [f] is finite étale, we have E [f](T) = E [f](Tp)

compatibly with the actions of σ and FrNpn . It now follows from (i) that the

map induced by νσ on the S-points of the f-torsion is

E [f](T)⊗OK
p−n

E [f](σ)⊗f→ E [f](σ!(T)) = σ∗(E )[f](T)

where f is level-f structure defined by (1.4.7).

Now let f = pr for some r ≥ 0. Setting Er := E [pr] and

T∞ = Spf(OKsep
p

) = colim
n

Spec(OKsep
p
/pn+1),

we obtain the commutative diagram

Er(T)⊗OK
p−n //

��

σ∗(Er)(T)

��

Er(T∞)⊗OK
p−n // σ∗(Er)(T∞).

(2.5.9.1)

whose columns are isomorphisms as Er is finite locally free over S. Now con-

sider F = E [p∞] ×T T∞ and set Fr = F[pr]. Then F is a Lubin–Tate OKp-

module over the p-adic sheaf T∞ by (2.2.11) and the map on the bottom row
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of (2.5.9.1) is equal to

νσ : Fr(T∞)⊗OKp
p−n

∼−→ σ∗(Fr)(T∞)

where νσ is the unique map in (i) of (1.2.20). It follows from (iii) of (1.2.20)

that this map is given by

Fr(σ)⊗OKp
χKp(σ) : Fr(T∞)⊗OKp

p−n
∼−→ F[pr](σ!(T∞)) = σ∗(F[pr])(T∞)

where σ|Kab
p

= (χKp(σ),Kab
p /Kp). Therefore the map in the top row of (2.5.9.1)

is given by Er(σ)⊗OK
χKp(σ).

Writing S = Spec(Ksep
p ) and considering the generic fibre E := E ×T S, and

arbitrary f, the computations above show that the map induced by νσ

E[f](S)⊗OK
p−n

∼−→ E[f](σ!(S)) = σ∗(E[pr])(S)

is given by E(σ)⊗ χKp(σ) where we view χKp(σ) as

p−n
χKp (σ)
−→ AOK

→ OK/f.

Therefore

[σ]Kp,f = (p−n, p−n
χKp (σ)
→ AOK

→ OK/f) = [χKp(σ)]f.

Taking limits we find [σ]Kp = [χKp(σ)] and by (1.4.8.2) we get

σ|K∞ = θK([σ]Kp)

where the restriction is along any K-embedding K∞ → Ksep
p .

(iii) We see from (ii) that for all primes p and all embeddings Ksep → Ksep
p

and all σ ∈ G(Ksep
p /K), writing τ = σ|Ksep

τ |K∞ = (σ|Ksep)|K∞ = σ|K∞ = θK([σ]Kp) = θK([σ|Ksep ]K) = θK([τ ]K).

However, the sub-group of G(Ksep/K) generated by elements of the form τ =

σ|Ksep (for varying primes p and embeddings Ksep → Ksep
p ) is dense. It follows,

by continuity and multiplicativity, that for all τ ∈ G(Ksep/K) we have

τ |K∞ = θK([τ ]K).

2.5.10. The homomorphisms [−]F can be (trivially) reinterpreted idèlically

using the isomorphism (1.4.7.2)

CLOK,∞
h−1

K→ (A⊗OK
K)×/K×

and we do so only to make clear the relationship with the map (1.2.21.1). Let

us do so here for hK and so define χK = [−]K ◦ h−1
K .

(i) For all σ ∈ G(Ksep/K) we have σ|K∞ = (χK(σ),K∞/K) (cf. (iv) of

(1.2.20)).
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(ii) For each prime p, each σ ∈W(Ksep
p /Kp) ⊂ G(Ksep

p /K) and each K-linear

Ksep → Ksep
p we have

χK(σ|Ksep) = χKp(σ) ∈ K×p ⊂ (AOK
⊗OK

K)×/K×

where χKp is the homomorphism of (1.2.21.1).

(iii) If K ⊂ L ⊂ Ksep is a finite extension of K and ρ : G(Ksep/L) → A×OK
is

a continuous character then there exists a CM elliptic curve E/Spec(L)

with ρE/L = ρ if and only if the following diagram commutes

G(Ksep/L)
ρ−1

E/L
//

χK|G(Ksep/L) ((

A×OK

��

(AOK
⊗OK

K)×/K×

where the right vertical arrow is the obvious map.

2.5.11 Remark. — Let L/K be a finite Galois extension and let E/L be a

CM elliptic curve. We now give a simple description of the algebraic Hecke

character of E/L, which is a certain continuous homomorphism

ψE/L : IL → K×

satisfying ψE/L|L× = NL/K (for the definition of ψE/L see §7 of [31]).

View the homomorphism

ρE/L : G(Ksep/L)→ A×OK

as a homomorphism

ρE/L : G(Lab/L) = G(Lsep/L)ab → A×OK

and for s ∈ IL write sfin for the element of (AOK
⊗OK

L)× obtained by forgetting

the components of s at the places of L lying over ∞. Then we claim that

algebraic Hecke character ψE/L associated to E/L is given by

ψE/L : IL → (AOK
⊗OK

K)× : s 7→ ρE/L((s−1,Lab/L)) ·NL/K(sfin). (2.5.11.1)

We will not prove this but let us show that the map ψE/L defined by (2.5.11.1)

satisfies ψE/L|L× = NL/K and ψE/L(IL) ⊂ K× ⊂ (AOK
⊗OK

K)×.

For a ∈ L× ⊂ IL we have

ρE/L(a) = ρE/L((a−1,Lab/L)) ·NL/K(afin) = 1 ·NL/K(a)

so that ρE/L|L× = NL/K. Now computing the composition

IL

ρE/L→ (A⊗OK
K)×

[−]→ CLOK,∞
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we find:

[ρE/L((s−1,Lab/L)) ·NL/K(sfin)] = [ρE/L((s−1,Lab/L))] · [NL/K(sfin)]

= [(s−1,Lab/L)]L · [NL/K(sfin)]

= [(NL/K(s−1),Kab/K)]K · [NL/K(sfin)]

= [(NL/K(s−1
fin ),K∞/K)]K · [NL/K(sfin)]

= [NL/K(s−1
fin )]K · [NL/K(sfin)]

= 1.

Therefore, ρE/L(IL) ⊂ ker([−] : (A⊗OK
K)× → CLOK,∞) = K×.

2.5.12 Proposition. — Let L/K be a finite Galois extension, E/L a CM

elliptic curve, v be a non-archimedian place of Ksep lying over the primes P

of OL and p of OK, and let Iv ⊂ G(Ksep/L) be the inertia group at v. Then

ρE/L(Iv) ⊂ O×K · O
×
Kp
⊂ A×OK

and E/L has good reduction at P if and only if

ρE/L(Iv) ⊂ O×Kp
.

Proof. — The homomorphisms ρE/L and [−]L both factor through G(Lab/L)

and we will denote the resulting homomorphisms by the same symbol. The im-

age [Iv]L of the inertia group at v is equal to [(O×LP
,Lab/L)]L where (−,Lab/L) :

CL → G(Lab/L) is the global reciprocity map (1.3.3) and where O×LP
⊂

IL/L
× = CL.

As [−]L = [−]K|G(Ksep/L), the compatibility of the reciprocity maps with the

norm (1.3.4) shows that

[(O×LP
,Lab/L)]L = [(NL/K(O×LP

),Kab/K)]K ⊂ [(O×Kp
,Kab/K)]K.

By (iii) of (2.5.9) we have

[(O×Kp
,Kab/K)]K = [(O×Kp

,K∞/K)]K = [O×Kp
] ⊂ CLOK,∞.

This combined with the relation [ρ−1
E/L] = [−]L and the fact that

ker([−] : A×OK
→ CLOK,∞) = O×K ⊂ A×OK

shows that ρE/L(Iv) ⊂ O×K ·O
×
Kp

.

Now let ` be a rational prime such that ` · OK is prime to p. Then the

action of Iv on E[`∞](Spec(Lsep)) factors through the image of ρE/L(Iv) under

the projection A×OK
→ (OK ⊗Z Z`)

× and is trivial if and only if this image is

trivial. As ρE/L(Iv) ⊂ O×K · O
×
Kp

the image of this homomorphism is equal to

ρ(Iv) ∩O×K ⊂ (OK ⊗Z Z`)
× which is trivial if and only if ρE/L(Iv) ⊂ O×Kp

. We

may now apply (2.1.16) to see that E/L has good reduction at v if and only if

ρE/L(Iv) ⊂ O×Kp
.
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2.5.13 Proposition. — Let L be a finite Galois extension of K and let E/L

a CM elliptic curve. If E[f] is a constant scheme over Spec(L) for some f

which separates units then E/L has good reduction everywhere.

Proof. — If E[f] is constant then the action of G(Lsep/L) on E[f](Spec(Lsep))

is trivial and therefore ρE/L takes values in A×,fOK
⊂ A×OK

. By (2.5.12), for

each finite place v of Lsep lying over the prime p of OK, we have ρE/L(Iv) ⊂
O×K ·OK×p

⊂ A×OK
. Combining these, we have

ρE/L(Iv) ⊂ (O×K ·OK×p
) ∩A×,fOK

⊂ O×,fK ·O×Kp
.

As f separates units O×,fK = {1} and so ρE/L(Iv) ⊂ O×Kp
. It now follows from

(2.5.12) that E/L has good reduction at v.

2.5.14 Example. — Let p be a prime of OK and let Fpn be the unique

extension of Fp of degree n. As G(Fsep
p /Fpn)

∼−→ Ẑ is topologically generated

by the Npn-power Frobenius map, we see from (i) of (2.5.9) to give a continuous

homomorphism

ρ : G(Fsep
p /Fpn)→ lim

(p,f)=OK

(OK/f)
×

such that [−]Fpn
= [ρ−1] is the same as giving a generator ρ(FrNpn) = πn ∈

OK of the ideal pn. The corresponding isogeny class of CM elliptic curves

E/Spec(Fpn) are those with the property that the endomorphism

πn : E→ E

is equal to the Npn-power Frobenius.

2.5.15 Example. — Let f be an ideal that separates units and recall the

isomorphism (1.4.8.1):

A×,fOK

∼−→ G(K∞/K(f)).

Now define

ρ−1 : G(Ksep/K(f))→ A×OK

to be the composition

G(Ksep/K(f))→ G(K∞/K(f))
∼−→ A×,fOK

→ A×OK
.

Then [ρ−1(−)] = [−]K(f) and ρ corresponds to an isogeny class of CM elliptic

curves E/Spec(K(f)). These curves are distinguished by the fact that their

f-torsion E[f] is constant and their study is the topic of the next section.
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2.6. Moduli and level structures

In this section we define level-f structures for CM elliptic curves (for each

integral ideal f) and we show that the corresponding moduli stack M
(f)
CM admits

a natural action of C L
(f)
OK

under which it becomes a torsor (2.6.6). This

induces an action of CL
(f)
OK

on the coarse sheaf M
(f)
CM of M

(f)
CM and using this

we prove that M
(f)
CM is isomorphic to Spec(OK(f)[f

−1]) compatibly with the

isomorphism

θK,f : CL
(f)
OK

∼−→ G(K(f)/K)

of (1.4.7.3).

Most of the results contained in this section are probably more or less known,

however they do not seem to have appeared in the literature and so we are

happy to present a detailed account.

2.6.1. Let E/S be a CM elliptic curve and let f be an integral ideal of OK. A

level-f structure on E/S is an isomorphism of OKS
-modules β : E[f]

∼−→ OK/fS.

An f-isomorphism (E/S, β)→ (E′/S, β′) between CM elliptic curves with level-

f structures is an isomorphism f : E→ E′ such that β′ ◦ f |E[f] = β. We write

M
(f)
CM for the moduli stack over ShOK

whose fibre over an sheaf S is the category

of CM elliptic curves with level-f structures together with their f-isomorphisms

and if f = OK we identify MCM with M
(OK)
CM . If (E/S, β) is a CM elliptic curve

with level-f structure we shall often just denote it by E/S when the level-f

structure is clear (or at least does not need to be explicitly mentioned). We

list the following (usual) constructions and properties of CM elliptic curves

equipped with level-f structures.

2.6.2 Remark. — (i) If (E, β) and (E′, β′) are a pair of CM elliptic curves

equipped with level-f structures then we equip the rank one OK-local

system HomOK
S (E,E′) with the level-f structure

HomOK
S (E,E′)→ HomOK

S (E[f],E′[f])
∼−→ HomOK

S (OK/fS,OK/fS) = OK/fS

where the central isomorphism is

f 7→ α ◦ f ◦ α′−1.

(ii) If (E, β) and (L , α) are a CM elliptic curve and rank one OK-local system

over S with level-f structures then we equip E ⊗OK
L with the level-f

structure β ⊗OK
α.

(iii) The sheaf of f-automorphisms Aut
(f)
S (E) of a CM elliptic curve with level-f

structure (E/S, β) is equal to O×,fK . In particular, it is trivial if f separates

units.

(iv) The sheaf of f-isomorphisms Isom
(f)
S (E,E′) between two CM elliptic curves

over S equipped with level-f structures is finite and étale over S and E and

E′ are locally isomorphic if and only if Isom
(f)
S (E,E′) is an O×,fK S

-torsor.
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(v) Given a CM elliptic curve E/S with level-f structure (E/S, β) ∈M
(f)
CM(S)

the existence of the isomorphism β : E[f]
∼−→ OK/fS implies that E[f] is

étale over S. It follows from (2.2.11) that f is invertible on S and that

morphism S→ Spec(OK) factors through Spec(OK[f−1]). In other words,

the structure map M
(f)
CM → Spec(OK) factors through Spec(OK[f−1]) →

Spec(OK).

(vi) Let E → Spec(OKsep) be a CM elliptic curve (such a curve exists by

(2.3.3)). Then

E[f]×Spec(OKsep ) Spec(OKsep [f−1])

is étale and constant over Spec(OKsep [f−1]) and so admits a level-f struc-

ture. Choosing such a structure one obtains a map Spec(OKsep [f−1]) →
M

(f)
CM. As Spec(OKsep [f−1]) → Spec(OK[f−1]) is a cover, this shows that

the structure map from (the coarse sheaf of) M
(f)
CM to Spec(OK[f−1]) is

an epimorphism.

(vii) If a is a fractional ideal prime to f then a has a natural level-f structure,

coming from a → a ⊗OK
OK/f = OK/f, and we just write − ⊗OK

a for

the corresponding auto-equivalence of M
(f)
CM.

2.6.3. Using (ii) of (2.6.2) we can define a functor

M
(f)
CM × C L

(f)
OK
→M

(f)
CM : (E/S,L /S)→ E⊗OK

L /S

(the level-f structures are understood).

2.6.4 Proposition. — Let E,E′ be a pair of CM elliptic curves with level-f

structures over S. Then the evaluation map

E⊗OK
HomOK

S (E,E′)
∼−→ E′

is an f-isomorphism.

Proof. — This is immediate from the definitions.

2.6.5 Proposition. — For each prime ideal p prime to f and each n ≥ 0

there is a unique isomorphism of M
(f)
CM × Spec(Fp) auto-equivalences νpn :

−⊗OK
p−n

∼−→ FrNpn∗(−) such that for all CM elliptic curves E over Spec(Fp)-

sheaves S the diagram

E
FrNpn

E/S

$$

ipn

zz

E⊗OK
p−1

νpn

∼
// FrNpn∗(E)

commutes.
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Proof. — We need only verify that the isomorphism νpn(E/S) : E⊗OK
p−n

∼−→
FrNpn∗(S) of (2.2.13) is an f-isomorphism. However, the morphisms ipn and

FrNpn

E/S induce isomorphisms on the f-torsion which are compatible with the

level-f structures on E, E⊗OK
p−n and FrNpn∗(E) so that as FrNpn

E/S = νpn ◦ ipn
it follows that νpn(E/S) is an f-isomorphism.

2.6.6 Proposition. — The functor

M
(f)
CM × C L

(f)
OK
→M

(f)
CM ×M

(f)
CM : (E,L ) 7→ (E,E⊗OK

L )

is an equivalence of stacks and M
(f)
CM is locally equivalent to C L

(f)
OK
×Spec(OK[f−1]).

Proof. — By (2.6.4) this functor is essentially surjective. Moreover, for all S

the morphism

Isom
(f)
S (E,E′)×SIsom

(f)
S (L ,L ′)→ Isom

(f)
S (E,E′)×SIsom

(f)
S (E⊗OK

L ,E′⊗OK
L ′)

is an isomorphism of sheaves over S, as this can be checked on S sections.

Indeed, if Isom
(f)
S (E,E′)(S) = ∅ then it is clear and if Isom

(f)
S (E,E′)(S) 6= ∅, we

may assume that E = E′ and show instead that the map

Isom
(f)
S (L ,L ′)→ Isom

(f)
S (E⊗OK

L ,E⊗OK
L ′) : h 7→ idE ⊗ h (2.6.6.1)

is bijective. The bijectivity of this map follows from (2.2.6) combined with the

fact that an isomorphism h : L → L ′ induces an f-isomorphism idE ⊗OK
h :

E⊗OK
L

∼−→ E⊗OK
L ′ if and only if h is an f-isomorphism.

2.6.7. We now wish to compute the coarse sheaves M
(f)
CM := C(M

(f)
CM) of the

stacks M
(f)
CM. First let us define an action of

CL
(f)
OK

[f−1] = CL
(f)
OK
× Spec(OK[f−1])

on M
(f)
CM. As this group is constant it is enough to define an action of CL

(f)
OK

and then, using the isomorphism

Id
(f)
OK
/Prin

(f)
1 mod f

∼−→ CL
(f)
OK

: a 7→ [a]f

it is enough to define an action of Id
(f)
OK

with the property that Prin
(f)
1 mod f acts

trivially. Each ideal a ∈ Id
(f)
OK

, equipped with its standard level-f structure

induces an auto-equivalence

−⊗OK
a : M

(f)
CM →M

(f)
CM

and by the universal property of the coarse sheaf an automorphism [a]f :

M
(f)
CM → M

(f)
CM. For a, b ∈ Id

(f)
OK

, the natural f-isomorphisms

(−⊗OK
a)⊗OK

b
∼−→ −⊗OK

ab
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show that [b]f ◦ [a]f = [ab]f. We have [a]f = [b]f ∈ CL
(f)
OK

if and only if there

exists an f-isomorphism a
∼−→ b, which in turn induces an isomorphism auto-

equivalences

−⊗OK
a
∼−→ −⊗OK

b

and gives [a]f = [b]f : M
(f)
CM → M

(f)
CM so that we have defined our action.

Moreover, by (2.6.5) it follows that for each prime p ∈ Id
(f)
OK

the pull-back

of the automorphism

[p−1]f : M
(f)
CM

∼−→ M
(f)
CM

along Spec(Fp)→ Spec(OK[f−1]) is equal to the Np-power Frobenius

[p−1]f × Spec(Fp) = FrNp : M
(f)
CM × Spec(Fp)

∼−→ M
(f)
CM × Spec(Fp) (2.6.7.1)

2.6.8. If (E/S, β) is a CM elliptic curve with level-f structure then we write

cE/S,f : S→ M
(f)
CM

for the composition

S
(E,β)−→ M

(f)
CM

c
M

(f)
CM−→ M

(f)
CM

(when f = OK we drop the f). It follows from the definition of σa that

cE⊗OK
a/S,f = σa ◦ cE/S,f. (2.6.8.1)

2.6.9 Corollary. — (i) The action of CL
(f)
OK

[f−1] on M
(f)
CM makes it a tor-

sor over Spec(OK[f−1]).

(ii) M
(f)
CM is finite and étale over Spec(OK[f−1]).

(iii) The action of G(Ksep/K) on M
(f)
CM(Spec(Ksep)) is through the homomor-

phism

G(Ksep/K)→ G(K(f)/K)
θK,f→ CL

(f)
OK
⊂ AutSpec(OK[f−1])(M

(f)
CM)

hence

Spec(OK(f)[f
−1])

∼−→ M
(f)
CM.

Proof. — (i) To show that the action of CL
(f)
OK

[f−1] is free it is enough to show

that for each [a]f ∈ CL
(f)
OK

the automorphism [a]f : M
(f)
CM

∼−→ M
(f)
CM fixes a

section S → M
(f)
CM if and only if [a]f = [OK]f. So let [a]f ∈ CL

(f)
OK

fix a section

S → M
(f)
CM. By the definition of the coarse sheaf, there exists a cover S′ → S

and a CM elliptic curve E/S′ such that the induced map S′ → S → M
(f)
CM

is equal to cE/S′,f. This section cE/S′,f is also fixed by [a]f which is now the

statement that the two CM elliptic curves with level-f structure E and E⊗OK
a

are locally f-isomorphic over S′. After refining S′, we may assume that E and

E ⊗OK
a are actually f-isomorphic which by (2.6.6) implies the existence of

an f-isomorphism OKS′
∼−→ aS′ . After refining S′ again such an isomorphism
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is constant and of the form h where h : OK → a is an f-isomorphism and it

follows that [a]f = [OK]f.

Similarly, to show that the action of CL
(f)
OK

[f−1] is transitive, it is enough to

show that for each pair of sections c1, c2 : S→ M
(f)
CM there is a cover (Si → S)i∈I

and elements [ai]f ∈ CL
(f)
OK

such that [ai]f◦c1|Si = c2|Si . Again by the definition

of the coarse sheaf there exists a cover S′ → S and CM elliptic curves E1, E2

over S such that the compositions S′ → M
(f)
CM of c1 and c2 with S′ → S are

equal to cE1/S,f and cE2/S,f. By (2.6.6) there exists an OK-local system (L , α)

with level-f structure and an f-isomorphism

E1
∼−→ E2 ⊗OK

L .

After base change to a cover (Si → S)i∈I (the corresponding class of L may

not be constant which is why our cover may consist of multiple elements)

we may assume that (L , α) = (aS′ , fS′
) and it follows from (2.6.8.1) that

cE2/S,f = [a]f ◦ cE1/S,f and this proves the claim.

(ii) The fact that M
(f)
CM is finite and étale over Spec(OK[f−1]) follows by

descent, as M
(f)
CM is locally (over Spec(OK[f−1])) isomorphic to CL

(f)
OK

[f−1] by

(i) and CL
(f)
OK

[f−1] is finite and étale over Spec(OK[f−1]).

(iii) For each prime p prime to f, the automorphism [p−1]f : M
(f)
CM → M

(f)
CM

lifts the Np-power Frobenius automorphism modulo p (2.6.7.1). For any such

automorphism (of any finite étale Spec(OK[f−1])-scheme) there exists an ele-

ment σ ∈ G(Ksep/K) such that

M
(f)
CM(σ) = [p−1]f(Spec(Ksep)) : M

(f)
CM(Spec(Ksep))→ M

(f)
CM(Spec(Ksep)).

However, the action of CL
(f)
OK

on M
(f)
CM(Spec(Ksep)) is transitive by (i), and

CL
(f)
OK

is generated by elements of the form [p−1]f and so it follows that the

action G(Ksep/K) on M
(f)
CM(Spec(Ksep)) is transitive. Therefore M

(f)
CM is con-

nected and isomorphic to Spec(OL[f−1]) for some finite extension L/K which is

unramified away from f. By construction, the isomorphism G(L/K)→ CL
(f)
OK

sends the Frobenius element σL/K,p to [p−1]f and it follows that L
∼−→ K(f)

(cf. (1.4.7.3)).

2.6.10 Remark. — We list the following consequences of (2.6.9).

(a) The coarse sheaf MCM of MCM is isomorphic to Spec(OH) where H is

the Hilbert class field of K. This recovers the fact the j-invariants of CM

elliptic curves defined over extensions of K lie in H ⊂ L.

(b) Let E→ S be any CM elliptic curve and recall that

cE/S : S→ MCM

denotes the morphism

S
E→MCM

cMCM−→ MCM.
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Then by definition, if E′ is another CM elliptic curve over S then cE/S, cE′/S :

S→ MCM are equal if and only if E and E′ are locally isomorphic. Com-

bining this with (2.4.3) and (2.5.8), we find that if S = Spec(F) for F a

field then the map

E/F 7→ (ρE/F, cE/F)

defines a bijection between the set of isomorphism classes of CM elliptic

curves over E/Spec(F) with the set of pairs (ρ, c) where:

(i) ρ : G(Fsep/F)→ limf(OK/f)
× is a homomorphism such that [ρ−1] =

[−]F, and

(ii) c : Spec(L)→ MCM is any map.

(c) If f separates units then M
(f)
CM

∼−→ M
(f)
CM

∼−→ Spec(OK(f)[f
−1]). If E/Spec(K(f))

denotes the generic fibre of the universal CM elliptic curve with level-f

structure the homomorphism

ρE/K(f) : G(K(f)sep/K(f))→ A×OK

is equal to (cf. (1.4.8.1))

G(K(f)sep/K(f))
−|K∞−→ G(K∞/K(f))

∼−→ A×,fOK

incl−→ A×OK
.





CHAPTER 3

Λ-STRUCTURES, WITT VECTORS AND

ARITHMETIC JETS

In this chapter we give a brief introduction to, and overview of, the theory

Λ-structures, Witt vectors and arithmetic jet spaces following the approach

of Borger [4], [5]. It is by nature a technical and notationally heavy theory,

but its many applications make it a worthwhile subject. The two papers

mentioned are both an excellent introduction and general reference and we

encourage to the reader to consult them. We give here really only the minimal

set up necessary for our applications in Chapter 4 and proofs are given only

where they cannot be cited or where it would be perhaps enlightening.

In the final section we prove a small new result which shows that Λ-structures

on relative abelian schemes are determined by their underlying Ψ-structures.

3.1. Plethories

3.1.1. Fix a pair of rings O and O′. An O-O′-biring Φ is an O-algebra together

the structure of an O′-algebra on the set HomO(Φ,A) which is functorial in

the O-algebra A. This is structure is determined by certain homomorphisms

(i) coaddition and comultiplication: ∆+
Φ ,∆

×
Φ : Φ→ Φ⊗O Φ

(ii) coadditive and comultiplicative units: ε+Φ , ε
×
Φ : Φ→ O

(iii) O′ coaction: O′ → EndO(Φ) : s 7→ sΦ

satisfying various identities (cocommutativity of the coaddition and comulti-

plication, coassociativity and so on).

We denote by BiringO,O′ the category whose objects are O-O′-birings and

whose morphisms are those O-homomorphisms Φ → Φ′ inducing functorial

homomorphisms of O′-algebras HomO(Φ′,A)→ HomO(Φ′,A). Of course, this

is equivalent to the homomorphism Φ→ Φ′ being ‘compatible’ with the maps

∆+
Φ , ∆+

Φ′ and so on.

3.1.2. The functor corepresented by a biring Φ:

A 7→ HomO(Φ,A) : AlgO → AlgO′
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admits a left adjoint, which we denote by B 7→ Φ �O′ B, which is defined as

follows: Φ �O′ B is the quotient of the free O-polynomial algebra generated

by the symbols φ� b for φ ∈ Φ and b ∈ B subject to the relations

(φ+ φ′)� b = φ� b+ φ′ � b, φφ′ � b = (φ� b)(φ′ � b), (rφ)� b = r(φ� b)

and

φ� (b+ b′) = ∆+
Φ(φ)(b, b′)(1), φ� bb′ = ∆×Φ(φ)(b, b′), φ� sb = sΦ(φ)� b

for all φ, φ′ ∈ Φ, b, b′ ∈ B, r ∈ O and s ∈ O′. The O-algebra Φ�O′ B is called

composition product of Φ with B.

3.1.3. If Φ is an O-O′-biring and O→ O′′ is a homomorphism then Φ⊗O O′′

is an O′′-O′-biring and (Φ �O′ B) ⊗O O′′ = (Φ ⊗O O′′) �O′ B. The functor

BiringO,O′ × AlgO′ → AlgO : (Φ,B) → Φ �O′ B commutes with colimits in

each variable. We give the two simplest examples when O = O′.

(i) The functor A 7→ A is represented by the O-O-biring O[e].

(ii) Even simpler is the functor A 7→ 0 represented by the O-O-biring O itself.

3.1.4. We now concentrate on the case O = O′ and just call an O-O-biring an

O-biring and shall drop O from the notation when there is no risk of confusion.

If Φ and Φ′ are two O-birings then we may consider the composition product

Φ � Φ′ which, using the standard properties of adjunctions, is again an O-

biring. The composition product then defines a monoidal structure on the

category of O-birings with identity O[e]. The functor

Φ 7→ Φ�−

from O-birings to endofunctors on AlgO is monoidal and fully faithful.

3.1.5. An O-plethory is an O-biring Φ together with the structure of a monad

on the functor A 7→ Φ � A or equivalently a comonad on the functor A 7→
HomO(Φ,A). The remarks in (3.1.4) then show that to give the functor A 7→
Φ�A the structure of a monad is equivalent to giving

(i) a homomorphism of O-birings iΦ : O[e]→ Φ and

(ii) a homomorphism of O-birings hΦ : Φ� Φ→ Φ

such that

hΦ ◦ (Φ� iΦ) = hΦ ◦ (iΦ � Φ) = idΦ and hΦ ◦ (Φ� hΦ) = hΦ ◦ (hΦ � Φ).

(1)This notation means that if ∆+
Φ(φ) =

∑
i φi ⊗ φ′i then ∆+

Φ(φ)(b, b′) =
∑
i(φi � bi)(φ

′
i � b′i)

and similarly for ∆×Φ(b, b′).
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3.1.6. If Φ is an O-plethory we define a Φ-ring to be an O-algebra A equipped

with an action of the monad Φ�−. Given a Φ-ring A we denote by

hA : Φ�A→ A

the map defining the Φ-ring structure on A. We denote the category of Φ-

rings and compatible morphisms by AlgΦ
O. If A is an O-algebra then Φ�A and

HomO(Φ,A) are Φ-rings and these two functors are the left and right adjoints

of the forgetful functor AlgΦ
O → Alg. We have the diagram of functors, each

one left adjoint to the one below it:

AlgΦ
O

forget
// AlgO.

HomO(Φ,−)

bb

Φ�O−

{{

3.2. Witt vectors and arithmetic jets I

3.2.1. During §§3.2–3.4 we fix a Dedekind domain O with finite residue fields

and P ⊂ IdO a sub-monoid generated by some set of prime ideals of O and we

write K for the fraction field of O. Note that we allow Dedekind domains of

finite characteristic, e.g. O = Fp[T].

3.2.2. Denote by Ψ the free polynomial O-algebra generated by the symbols

ψa for a ∈ P. We make Ψ an O-biring by equipping the set

HomO(Ψ,A) = HomO(O[ψa : a ∈ P],A)
∼−→
∏
a∈P

A : f 7→ (f(ψa))a∈P

with the product O-algebra structure. We then give Ψ the structure of an

O-plethory by setting

iΨ : O[e]→ Ψ : e 7→ ψ(1) and hΨ : Ψ�Ψ→ Ψ : ψa � ψb 7→ ψab.

3.2.3. For each ring A we write Γ(A) for the ring

Γ(A) := HomO(Ψ,A) =
∏
a∈P

A

and call it the ring of ghost vectors of A. We define the ghost jets of a ring A

to be the ring

Ψ�O A.

Let us examine a little more the ring of ghost jets Ψ �O A of a ring A and

what it means for A to be a Ψ-ring.

Recall (3.1.2) that if A is an O-algebra then Ψ�O A is given by the quotient

of the O-polynomial algebra

O[ψa � a : a ∈ P, a ∈ A]
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by the ideal generated by the elements of the following form

ψa � (a+ b)− ψa � a− ψa � b
ψa � (ab)− (ψa � a)(ψa � b)

ψa � (ra)− r(ψa � a)

for a, b ∈ A, r ∈ O. Now to give A the structure of a Ψ-ring is the same as

giving an O-homomorphism

hA : Ψ�O A→ A

satisfying certain properties. In this case, the properties which must be satis-

fied are equivalent to the following:

(i) for each a ∈ P the map ψa
A : A → A defined by a 7→ hA(ψa � a) is an

O-algebra homomorphism,

(ii) for each a, b ∈ P we have ψa
A ◦ ψb

A = ψb
A ◦ ψa

A = ψab
A , and

(iii) we have ψ
(1)
A = idA : A→ A.

We see that if A is a Ψ-ring then A has an action of the monoid P where a ∈ P

acts by ψa
A : A → A. This sets up a bijection between Ψ-ring structures on

A and actions of P on A. Given a Ψ-ring we will write ψa
A : A → A for the

corresponding P-action. In particular, the Ψ-ring Ψ itself has the P-action

ψa
Ψ : ψb 7→ ψab

for a, b ∈ P. Note that the Ψ-ring structure on O is given by

ψa
O = idO : O→ O.

3.2.4. As we are dealing with rings equipped with endomorphisms, it will

be useful here to say a little about semi-linear self maps versus twisted lin-

ear maps. The example to have in mind is the following: if A is a ring of

characteristic p and A→ B is an A-algebra then the p-power Frobenius

FrpB : B→ B : b 7→ bp

is FrpA-linear where FrpA : A → A : a 7→ ap is the p-power Frobenius of A.

This then induces an A-linear map, the relative p-power Frobenius, FrpB/A :

Frp∗A (B)→ B.

Now, a morphism of Ψ-rings f : A→ B is just a homomorphism such that

the diagram

A

f
��

ψa
A
// A

f
��

B
ψa

B
// B
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commutes for all a ∈ P. Viewing B as an A-algebra via f , the homomorphism

ψa
B : B→ B is ψa

A-linear and induces an A-linear map

ψa
B/A : ψa∗

A (B)→ B.

That the homomorphisms ψa
B for a ∈ P commute is now expressed by the

condition that for all a, b ∈ P we have

ψb
B/A ◦ ψ

a∗
A (ψb

B/A) = ψa
B/A ◦ ψ

b∗
A (ψa

B/A) = ψab
B/A (3.2.4.1)

or in a commutative diagram:

ψab∗
A (B)

ψb∗
A (ψa

B/A
)
//

ψa∗
A (ψb

B/A
)

��

ψ∗aA (B)

ψa
B/A

��

ψ∗bA (B)
ψb

B/A
// B.

Moreover, if A is a Ψ-ring and A → B is an A-algebra then to give B the

structure of Ψ-ring such that A → B is a Ψ-homomorphism is the same as

giving maps ψa
B/A : ψa∗

A (B) → B for each a ∈ P such that ψ
(1)
B/A = idB and

which satisfy the commutativity condition (3.2.4.1). The category of Ψ-rings

over a Ψ-ring A is denoted AlgΨA
and its objects called ΨA-rings.

3.2.5. We now come to the matter of interest which is lifting the Frobenius.

We wish to impose on a Ψ-ring A the condition that the homomorphisms ψp
A :

A → A, for p ∈ P prime, be lifts of the Np-power Frobenius endomorphism

(recall that Np = #Fp):

ψp
A(a) = aNp mod pA (3.2.5.1)

This is done by enlarging the plethory Ψ in such a way that the endomorphisms

corresponding to the elements ψp ∈ Ψ, for each prime p ∈ P, will be forced to

satisfy the relation (3.2.5.1).

So for each integer n ≥ 0 define sub-O-algebras Λn ⊂ Ψ ⊗O K inductively

by setting Λ0 = Ψ, and for n ≥ 0, setting Λn+1 to be the sub-Λn-algebra of

Ψ⊗O K generated by the subsets

p−1(fNp − ψp
Ψ(f)) ⊂ Ψ⊗O K (3.2.5.2)

for p ∈ P a prime ideal and f ∈ Λn. Finally, we set

Λ = ∪n≥0Λn ⊂ Ψ⊗O K.

Then Λn ⊂ Ψ⊗O K is stabilised by the endomorphisms ψa
Ψ of Ψ⊗O K for each

a ∈ P, as is Λ ⊂ Ψ ⊗R K. Thus Λn and Λ admit unique Ψ-ring structures

such that Ψ ⊂ Λn ⊂ Λ are Ψ-morphisms. Moreover, for each n ≥ 0, and each

f ∈ Λn it follows from the definition (3.2.5.2) of Λn+1 that

ψp
Λ(f) = fNp mod pΛn+1
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and hence for all f ∈ ∪n≥0Λn = Λ we have

ψp
Λ(f) = fNp mod pΛ.

3.2.6 Proposition. — There is a unique O-plethory structure on Λ such that

the inclusion Ψ→ Λ is a morphism of O-plethories.

3.2.7 Remark. — Before we examine exactly what a Λ-ring is, the fact that

Ψ → Λ is a morphism of O-plethories implies that every Λ-ring A inherits a

Ψ-ring structure and hence a family of endomorphisms ψa
A : A → A for each

a ∈ P such that ψ(1) = idA and ψab
A = ψa

A ◦ ψb
A for all a, b ∈ P.

3.2.8 Proposition. — Let A be an O-algebra. We have the following:

(i) If A is a Λ-ring the endomorphism ψp
A : A→ A satisfies

ψp
A(a) = aNp mod pA

for each maximal ideal p ∈ P.

(ii) If A is a Ψ-ring and p-torsion free for each prime p ∈ P (i.e. flat at p for

each prime p ∈ P) then the given Ψ-structure comes from a Λ-structure

if and only if for each prime ideal p ∈ P the endomorphism ψp
A : A→ A

lifts the Np-power Frobenius

ψp
A(a) = aNp mod pA.

In this case the Λ-structure inducing the Ψ-structure is unique.

(iii) If each p ∈ P is invertible in A then every Ψ-structure on A is induced

by a unique Λ-structure.

Proof. — (i) and (ii) are (essentially) the definition of Λ-ring given in [4]. In

particular, see §§1.6–1.19 [4].

(iii) If each P in A is invertible any endomorphism ψp
A : A → A lifts the

Np-power Frobenius (trivially) and so this follows from (i) and (ii).

3.2.9 Remark. — We point out that if A → B is a homomorphism of Λ-

rings then ψp
A = FrNp

Ap
mod pA and the relative morphisms ψp

B/A : ψp∗
A (B)→ B

are now lifts of the relative Np-power Frobenius:

ψp
B/A = FrNp

Bp/Ap
: FrNp∗

Ap
(Bp)→ Bp

where we write Ap = A⊗O Fp and Bp = B⊗O Fp.

3.2.10 Example. — Using (3.2.8) we are now able to give the first examples

of Λ-rings:

(i) Of course O is always a Λ-ring with ψa
O : O → O equal to the identity.

The fact that ψp
O lifts the Np-power Frobenius is then Fermat’s little

theorem:

ψp
O(a) = a = aNp mod p

(recall that O/p = Fp is a finite field with Np-elements).
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(ii) The polynomial ring O[T] is a Λ-ring with ψa
O[T] : O[T]→ O[T] given by

T 7→ TNa.

(iii) If O = OK is the ring of integers in a number field, L/K is an abelian

extension and P ⊂ IdOK
is the sub-monoid generated by the primes which

are unramified in L/K, then the ring of integers OL of L is a ΛP-ring

with ψp
OL

= σL/K,p : OL → OL given by the Frobenius element σL/K,p ∈
G(L/K) (cf. (1.3.1)). Examples of this form will be very important later

give the first link between Λ-structures and class field theory.

3.2.11. We now give an explicit description of what it means for a non-

flat ring to be have Λ-structure in the special case P = {p, p2, . . .} ⊂ IdO is

generated by a single prime ideal of O and the prime ideal p = (π) is principal.

In this case, a Λ-structure on an O-algebra can described explicitly, and this

notion was discovered independently by Buium [10] (for some of the many

interesting arithmetic applications of δ-rings and δ-geometry see [11]).

So let us describe Λ in this situation. Define elements δn ∈ Λ for n ≥ 0

inductively by δ0 = ψ(1) and

δn+1 = π−1(ψp
Λ(δn)− (δn)Np) ∈ Λ.

Let ∆π ⊂ Λ be the sub-O-algebra generated by the elements {δn}n≥0.

3.2.12 Proposition. — The inclusion ∆π ⊂ Λ is an equality and ∆π is freely

generated as an O-algebra by the elements {δn}n≥0.

Proof. — See §1.19 of [4].

3.2.13 Corollary. — With notation as in (3.2.11) to give an O-algebra A a

Λ-structure is equivalent to defining a map

δπ : A→ A

such that:

(i) for r ∈ O we have

δπ(r) =
rNp − r
π

,

(ii) for a, b ∈ A we have

δπ(ab) = aNpδπ(b) + bNpδπ(a) + πδπ(a)δπ(b),

and

(iii) for a, b ∈ A we have

δπ(a+ b) = δπ(a) + δπ(b) +

Np−1∑
i=1

1

π

(
Np

i

)
aNp−ibi.

Proof. — Also see §1.19 of [4].
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3.2.14 Remark. — Let us spell out the equivalence between Λ-rings and

rings with an operator δπ satisfying (3.2.12) explicitly, in the case A is flat.

If δπ : A→ A is a map satisfying the conditions (i)–(iii) of (3.2.12) then it

follows that the map

ψp
A : A→ A : a 7→ aNp + πδπ(a)

is a O-algebra homomorphism satisfying

ψA
p (a) = aNp + πδπ(a) = aNp mod pA.

Conversely, if A is a p-torsion free Λ-ring then the relation

ψA(a) = aNp mod pA

implies that there is a unique δπ(a) ∈ A such that

ψA(a) = aNp + πδπ(a)

and the fact that ψp
A is an O-algebra homomorphism forces the map a 7→ δπ(a)

to satisfy conditions (i)–(iii) of (3.2.12).

3.2.15 Remark. — We can now explain why the approach with plethories

was taken. To define a Λ-ring as an O-algebra with a Frobenius lift ψp
A : A→ A

is a perfectly reasonable thing to do, however, there is a hidden existential

quantifier in this definition: that for all a ∈ A there exists an ap ∈ pA such

that ψp
A(a) = aNp+ap. This causes problems from the point of view of universal

algebra and the effect of the plethystic approach is to remove this existential

quantifier so that, rather than the Frobenius lift ψp
A, is it the operator δπ which

determines the structure.

3.2.16 Corollary. — If A is a Λ-ring then the kernel of the homomorphism

O→ A is either prime to all p ∈ P or A = 0 is the zero ring.

Proof. — We shall prove this in the situation of (3.2.12) remarking that it is

possible to reduce to this case once more of the theory has been set-up. So let

A be a Λ-ring and assume that πn ∈ pn ⊂ ker(O→ A). As the homomorphism

O → A is a Λ-homomorphism the kernel is stabilised by the endomorphism

δπ : O→ O which is given by

a 7→ aNp − a
π

.

In particular, we see that

δπ(πn) =
πNpn − πn

π
= πNpn−1 − πn−1 = πn−1(πNp(n−1) − 1) ∈ pn−1.

Therefore, pn−1 ⊂ ker(O→ A) and by induction we find that O ⊂ ker(O→ A)

and so A is the zero ring.
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3.2.17. Let P′ ⊂ P be a sub-monoid generated by some set of prime ideals.

Then the restriction of the map hΛP
: ΛP � ΛP → ΛP along ΛP′ � ΛP → ΛP

makes ΛP a ΛP′-ring. Similarly, for ΨP and ΨP′ .

Now denote by

P′′ = {a ∈ P : (a, b) = (1) for all b ∈ P′} ⊂ P

so that P′·P′′ = P and P′∩P′′ = {O}. By the remark above the map ΛP′′ → ΛP

extends by adjunction to a homomorphism of ΛP′-rings

αP′,P′′ : ΛP′ � ΛP′′ → ΛP

which is also a homomorphism of ΨP-rings where P′′ ⊂ P acts on the left

factor.

3.2.18 Proposition. — The map αP′,P′′ : ΛP′ � ΛP′′ → ΛP defined above is

a ΛP′-isomorphism.

Proof. — This is Proposition 5.3 of [4].

3.2.19. We now define truncated versions of the birings Λ and Ψ as, when

we come to geometrise the theory of Λ-rings, they will be more well behaved

(cf. (3.2.22)).

We equip the O-algebra Ψ ⊗O K with an exhaustive filtration by sub-O-

algebras, indexed by the elements of P ordered by division, by setting (Ψ ⊗
K)a for a ∈ P to be the sub-K-algebra generated by the ψb such that b|a.

The intersection of this filtration with the sub-O-algebras Λ and Ψ induces

exhaustive filtrations by sub-O-algebras Λa ⊂ Λ and Ψa ⊂ Ψ and we have

Ψa = O[ψb : b|a].

3.2.20 Proposition. — We have the following:

(i) for each a ∈ P there is a unique O-biring structure on Λa making Ψa →
Λa a biring homomorphism,

(ii) for each pair a, b ∈ P the homomorphism hΛ : Λ � Λ → Λ induces a

homomorphism Λa�Λb → Λab and this map is an isomorphism if a and

b are relatively prime.

Proof. — (i) This is Proposition 2.3 of [4].

(ii) This is Propositions 2.3 and 5.3 of [4].

3.2.21. Let A be an O-algebra. We write

W(A) = HomO(Λ,A) and Wa(A) = HomO(Λa,A)

and call these the rings of Witt vectors and Witt vectors of length a of A. We

also write

Γ(A) = HomO(Ψ,A)
∼−→
∏
a∈P

A and Γa(A) = HomO(Ψa,A)
∼−→
∏
b|a

A

and call these the rings of ghost vectors and length-a ghost vectors.
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3.2.22 Proposition. — Let a ∈ P and let A be an O-algebra. Then

(i) If (A→ Ai)i∈I is an étale cover of A so is (Wa(A)→Wa(Ai)), and

(ii) for all homomorphisms A → B and all étale homomorphisms A → A′

the natural map

Wa(A
′)⊗Wa(A) Wa(B)→Wa(A

′ ⊗A B)

is an isomorphism.

Proof. — This is Theorem 9.2 and Corollary 9.3 of [4].

3.3. Witt vectors and arithmetic jets II

The purpose of this section is to extend the definition of Λ-structures, Witt

vectors and arithmetic jets to sheaves for the étale topology.

3.3.1. Recall that Shét
O denotes the category of sheaves for the étale topology

over Spec(O), or ét-sheaves over Spec(O). We begin with the arithmetic jets

and coghosts. Let X be an ét-sheaf and define the presheaves on AffO

Wa∗(X) := X ◦Wa : Aff◦O → Set Γa∗(X) := X ◦ Γa : Aff◦O → Set.

3.3.2 Proposition. — Let a ∈ P and let be X an ét-sheaf. Then

Wa∗(X) := X ◦Wa : Aff◦O → Set Γa∗(X)(X) := X ◦ Γa : Aff◦O → Set

are again ét-sheaves. Moreover,

(i) if X = Spec(A) is affine then

Wa∗(X) = Spec(Λa �A) and Γa∗(X) = Spec(Ψa �A),

(ii) Wa∗ and Γa∗ commute with filtered colimits, and

(iii) Wa∗ sends smooth affine Spec(OK)-schemes to smooth affine Spec(OK)-

schemes.

Proof. — It is clear that Γa∗(X) of an ét-sheaf is again a sheaf, and for Wa∗(X)

it follows from (i) of (3.2.22).

(i) This is clear for Γa∗ and Proposition 10.7 of [5] for Wa∗.

(ii) This is clear for Γa∗ and Proposition 11.7 of [5] for Wa∗.

(iii) This is Proposition 13.3 of [5].

3.3.3. For an ét-sheaf X we have the following simple description of Γa(X).

The fact that Γa(A) = Πb∈P,b|aA for all O-algebras A (3.2.19) shows that

Γa∗(X)(A) = X(Γa(A)) =
∏

b∈P,b|a

X(A) =
∏

b∈P,b|a

X(A),

that is

Γa(X)
∼−→

∏
b∈P,b|a

X.



3.3. WITT VECTORS AND ARITHMETIC JETS II 75

3.3.4. For an ét-sheaf X we call Wa∗(X) the (ét-sheaf of) length-a arithmetic

jets of X and Γa∗(X) the (ét-sheaf of) length-a coghosts of X.

Standard sheaf theory supplies Wa∗ and Γa∗ with left adjoints which we

denote by W∗
a and Γ∗a. For a sheaf X we call W∗

a(X) the length-a Witt vectors

of X and Γ∗a(X) the length a-ghost vectors of X.

3.3.5 Proposition. — If X = Spec(A) is an affine scheme then

W∗
a(Spec(A)) = Spec(Wa(A)) and Γ∗a(Spec(A)) = Spec(Γa(A)).

Proof. — This is true for all left adjoints to push forwards along a morphism

of sites.

3.3.6. For a sheaf X we have the following simple description of Γa∗(X). The

fact that Γa(A) = Πb∈P,b|aA for all O-algebras A (3.2.19) shows that:

Γ∗a(X) = colim
Spec(A)→X

Γ∗a(Spec(A)) = colim
Spec(A)→X

Spec(Γa(A))

= colim
Spec(A)→X

∐
b∈P,b|a

Spec(A)

=
∐

b∈P,b|a

X

3.3.7. For a sheaf X, the inclusions Λa → Λb and Ψa → Ψb (3.2.19), for

a, b ∈ P with b|a, induce maps

Γa∗(X)→ Γb∗(X) and Wa∗(X)→Wb∗(X)

and taking the inverse limit in each case over the a ∈ P defines sheaves

Γ∗(X) := lim
a

Γa∗(X) and W∗(X) := lim
a

Wa∗(X)

which we call the (ét-sheaf of) arithmetic jets of X and (ét-sheaf of) coghosts

of X.

Adjointly, there are also induced maps

W∗
b(X)→W∗

a(X) and Γ∗b(X)→ Γ∗a(X)

and taking the colimit we obtain ét-sheaves

W∗(X) := colim
a

W∗
a(X) and Γ∗(X) := colim

a
Γ∗a(X)

which we call the (ét-sheaf of) ghost vectors of X and the (ét-sheaf of) Witt

vectors of X. By construction the functor Γ∗ is left adjoint to Γ∗, and W∗ is

left adjoint to W∗.

Generalising the descriptions of Γa∗(X) and Γ∗a(X) we have

Γ∗(X)
∼−→
∏
a∈P

X and Γ∗(X)
∼−→
∐
a∈P

X.
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3.3.8. The maps Λa � Λb → Λab (3.2.20) induce maps

W∗
b(W∗

a(X))→W∗
ab(X) and Wab∗(X)→Wa∗(Wb∗(X))

and taking the colimit and limit respectively over all a, b ∈ P we obtain maps

µW∗(X) : W∗(W∗(X))→W∗(X) and hW∗(X) : W∗(X)→W∗(W∗(X))

which together with the natural maps

g(1) : X→W∗(X) and γ(1) : W∗(X)→ X

induced by the compatible maps O[e] → Λa for all a ∈ P equip W∗ with

the structure of a monad and W∗ with the structure of a comonad on Shét
O .

We define the category of Λ-sheaves Shét
Λ to be the category of ét-sheaves X

equipped with an action of W∗ or equivalently a coaction of W∗. The functors

W∗ and W∗ now define functors Shét
O → Shét

Λ which are left and right adjoint to

the forgetful functor Shét
Λ → Shét

O . We have the following diagram of functors

each one right adjoint to the one below:

Shét
Λ

forget
// Shét

O .

W∗

bb

W∗

||

In particular, the forgetful functor in the middle admits both a left and

right adjoint and so commutes with both limits and colimits. That is, limits

and colimits in Shét
Λ may be computed in Shét

O .

3.3.9. The same construction above applied to the maps Ψa � Ψb → Ψab

equips Γ∗ with the structure of a monad and Γ∗ with the structure of a

comonad on Shét
O . In this case, it is easy to see that the map obtained

µΓ∗(X) : Γ∗(Γ∗(X))→ Γ∗(X)

is identified with the map∐
b∈P

∐
a∈P

X =
∐
a,b∈P

X→
∐
c∈P

X

whose restriction to the summand at b, a ∈ P is the inclusion onto the sum-

mand at c = ab ∈ P. Similarly, the map obtained

hΓ∗(X) : Γ∗(X)→ Γ∗(Γ∗(X))

is identified with the map ∏
c∈P

X→
∏
a∈P

∏
b∈P

X

whose composition with the projection onto the factor at a, b ∈ P is the

projection onto the factor at c = ab.
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We define the category of Ψ-sheaves Shét
Ψ to be the category of sheaves X

equipped with an action of Γ∗ or equivalently with a coaction of Γ∗. Then

Γ∗ and Γ∗ define functors Shét
O → Shét

Ψ which are left and right adjoint to the

forgetful functor Shét
Ψ → Shét

O . We have the following diagram of functors each

one right adjoint to the one below:

Shét
Ψ

forget
// Shét

O .

Γ∗

bb

Γ∗

||

3.3.10. From the descriptions of the monadic and comonadic structures on

Γ∗ and Γ∗ it is easy to see that to give a sheaf X the structure of Ψ sheaf

is equivalent to equipping X with an action of the monoid P. Indeed, denot-

ing the action of a ∈ P by ψa
X : X → X the map Γ∗(X) → X defining the

corresponding action of Γ∗ is just∐
a∈P

ψa
X :
∐
a∈P

X = Γ∗(X)→ X.

As with Ψ-rings if X → S is a morphism of Ψ-sheaves the ψa
S-linear endo-

morphisms ψa
X : X→ X for a ∈ P induce S-linear endomorphisms

ψa
X/S : X→ ψa∗

S (X)

satisfying the commutativity condition

ψb∗
S (ψa

X/S) ◦ ψb
X/S = ψab

X/S = ψa∗
S (ψb

X/S) ◦ ψa
X/S (3.3.10.1)

for all a, b ∈ P. Moreover, to give an ét-sheaf X→ S over S a Ψ-structure such

that the morphism X→ S is a Ψ-morphism is the same as giving maps ψa
X/S :

X → ψa∗
S (X) all a ∈ P with ψ

(1)
X/S = idX and satisfying the commutativity

condition (3.3.10.1).

3.3.11. The inclusions Λa → Ψa induce functorial maps for each sheaf X

g≤a : Γ∗a(X)→W∗
a(X) and γ≤a : Wa∗(X)→ Γa∗(X)

which we call the length-a ghost and coghost maps.

The inclusions

O[ψa] ⊂ O[ψb : b ∈ P, b|a] = Ψa

induce for each a the a-ghost component and a-coghost components

ga : X→ Γ∗(X)→W∗(X) γa : W∗(X)→ Γ∗(X)→ X
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which we denote by ga and γa and view as maps from X → W∗(X) or X →
Γ∗(X) and similarly for the a-coghost maps. We then have

g≤a =
∐
b|a

gb : Γ∗a(X) =
∐
b|a

X→ Γ∗(X).

Taking the colimit and limit along the length-a ghost and coghost maps we

obtain the full ghost and coghost maps

g : Γ∗(X)→W∗(X) and γ : W∗(X)→ Γ∗(X).

Finally, the natural transformations given by the ghost and coghost maps

g : Γ∗ → W∗ and γ : W∗ → Γ∗ are morphisms of monads and comonads

respectively and every Λ-sheaf X inherits the structure of a Ψ-sheaf. That

is every Λ-sheaf X admits a canonical action of the monoid P which, as for

Ψ-sheaves, we denote by ψa
X : X→ X for a ∈ P (and similarly for the relative

versions (cf. (3.3.10)).

3.3.12 Proposition. — We have the following:

(i) For each Λ-sheaf X and each prime p ∈ P the map

ψp
X ×Spec(O) Spec(Fp) : X×Spec(O) Spec(Fp)→ X×Spec(O) Spec(Fp)

is equal to the Np-power Frobenius endomorphism of X×Spec(O)Spec(Fp).

(ii) A Ψ-structure on a scheme X, flat over O at all primes p ∈ O, is induced

by a Λ-structure on X if and only if for each prime p ∈ P the map

ψp
X ×Spec(O) Spec(Fp) : X×Spec(O) Spec(Fp)→ X×Spec(O) Spec(Fp)

is the Np-power Frobenius endomorphism. Moreover, in this case such a

Λ-structure on X is unique.

(iii) If each p ∈ P is invertible on X then every Ψ-structure on X is induced

by a unique Λ-structure.

Proof. — See [6] or it is an exercise using Theorem 17.3 of [5].

3.3.13 Proposition. — We have the following:

(i) If f : X → Y an affine étale morphism of ind-affine-schemes then for

each a ∈ P the morphism

W∗
a(f) : W∗

a(X)→W∗
a(Y)

is affine and étale.

(ii) If f : X → Y is a affine étale morphism of ind-affine-schemes then for

any affine morphism Y′ → Y of ind-schemes the natural map

W∗
a(X×Y Y′)→W∗

a(X)×W∗a(Y) W∗
a(Y′)

is an isomorphism.
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Proof. — The case where X and Y are affine follows from (3.2.22) and we

shall reduce to this case. So write Y = colimi∈I Yi as a filtered colimit of

affine schemes, and for i ∈ I write Xi = X×Y Yi.

(i) Let i, j ∈ I with Yi → Yj → Y. Then as Yi and Yj are affine and X→ Y

is affine we have a cartesian diagram

W∗
a(Xj) // W∗

a(Yj)

W∗
a(Xi)

OO

// W∗
a(Yi)

OO

where the bottom arrow is affine and étale. Now taking the colimit over j

yields a cartesian diagram

W∗
a(X) // W∗

a(Y)

W∗
a(Xi)

OO

// W∗
a(Yi)

OO

where the bottom arrow is affine, so that as (W∗
a(Yi)→W∗

a(Y))i∈I is a cover

we are done.

(ii) Writing Y′i = Y′ ×Y Yi the morphism

W∗
a(X×Y Y′)→W∗

a(X)×W∗a(Y) W∗
a(Y′)

is the colimit over i ∈ I of the morphisms

W∗
a(Xi ×Yi Y′i)→W∗

a(Xi)×W∗a(Yi) W∗
a(Y′i)

which is an isomorphism as Yi,Y
′
i and Xi are all affine.

3.4. Λ-structures

3.4.1. Let S be a Λ-sheaf so that S is equipped with an action of the monad

W∗ and equivalently a coaction of the monad W∗.

From the monadic point of view we write

µS : W∗(S)→ S

for map defining the action of W∗ on S and we call this the structure map. The

fact that it defines an action of W∗ on S is the expressed via the commutativity

of the diagram

W∗(S)

µS

��

S
idS

//

g(1)
<<

S
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and the property that the two compositions

W∗(W∗(S))
µW∗(S)

//

W∗(µS)
// W∗(S)

µS
// S

coincide.

From the comonadic point of view we write

hS : S→W∗(S)

for the map defining the coaction of W∗, and the fact that it defines a coaction

is expressed via the commutativity of the diagram

S
hS
//

idS
""

W∗(S)

γ(1)

��

S

and the fact that the two compositions

S
hS
//// W∗(S)

hW∗(S)

//

W∗(hS)
// W∗(W∗(S))

are equal.

3.4.2. We denote by Shét
ΛS

the category of Λ-sheaves equipped with a Λ-

morphism X→ S. The functor

WS∗ : Shét
S → Shét

ΛS
: X 7→W∗(X)×W∗(S) S

composed with the forgetful functor is a comonad on Shét
S and identifies the

category of S-sheaves X with a coaction of WS∗ with the category of Λ-sheaves

equipped with a Λ-morphism X→ S.

3.4.3 Proposition. — Let S be a Λ-sheaf and let X and Y be a pair of ΛS-

sheaves. Then the functor

Shét
ΛS
→ Set : S′ 7→ HomΛS′ (XS′ ,YS′)

is a sheaf for the canonical topology.

Proof. — Let S′ → S be a cover of S in ShΛS
. Then S′ → S is also a cover when

viewed in Shét
S and so any ΛS′-morphism f ′ : XS′ → YS′ with the property that

the two pull-backs of f along the two projections S′×SS′ → S coincide descends
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to a morphism X → Y. It remains to verify that it is a ΛS-morphism, which

is the commutivity of the

X
hX/S

//

f

��

W∗(X)×W∗(S) S

W∗(f)×W∗(S)S

��

Y
hY/S

// W∗(Y)×W∗(S) S.

(3.4.3.1)

However, using the identifications

W∗(X)×W∗(S) S×S S′ = W∗(X)×W∗(S) S′

= W∗(X)×W∗(S) W∗(S
′)×W∗(S′) S′

= W∗(X×S S′)×W∗(S′) S′

and similarly for Y, the diagram (3.4.3.1) pulls-back along S′ → S to the

diagram

XS′

hXS′/S
′
//

f ′

��

W∗(X)×W∗(S′) S′

W∗(f ′)×W∗(S′)S
′

��

YS′

hYS′/S
′
// W∗(Y)×W∗(S′) S′

which commutes by hypothesis. Therefore, as S′ → S is an epimorphism, the

diagram (3.4.3.1) commutes.

3.4.4. Let S be a Λ-sheaf and let X → S be an S-ét-sheaf. Denote by ΛX/S

the functor

ΛX/S : Shét
ΛS
→ Set : S′/S 7→ {the set of ΛS′-structures on X×S S′}.

3.4.5 Proposition. — The functor ΛX/S is a sheaf for the canonical topology

on Shét
ΛS

.

Proof. — Let S′ → S be an epimorphism and write S′′ = S×S S′, X′ = X×S S′

and X′′ = X ×S S′′. By the definition of a ΛS-structure (in terms of W∗) we

have an equaliser (the Homs are of ét-sheaves not Λ-sheaves)

ΛX/S(S) // HomS(W∗(X),X) //
// HomS(X,X)×HomS(W∗(W∗(X)),X)

where the first map sends a ΛS-structure on S to the map µX : W∗(X) → X

and the two parallel arrows send a map µX to

(µX ◦ g(1), µW∗(X) ◦ µX) and (idX,W
∗(µX) ◦ µX).
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Now consider corresponding commutative diagram:

ΛX/S(S) //

��

HomS(W∗(X),X) //
//

��

HomS(X,X)×HomS(W∗(W∗(X)),X)

��

ΛX/S(S′) //

����

HomS(W∗(X′),X) //
//

����

HomS(X′,X)×HomS(W∗(W∗(X′)),X)

����

ΛX/S(S′′) // HomS(W∗(X′′),X) //
// HomS(X′′,X)×HomS(W∗(W∗(X′′)),X).

The two right columns are equalisers as X′ = X ×S S′ → X is a cover and

W∗ preserves push-outs and all three rows are equalisers. Therefore it follows

that the first column is an equaliser and we are done.

3.4.6 Proposition. — Let O be the ring of integers in a number field K, f ∈
IdO an ideal and write P = Id

(f)
O . Then a finite étale S = Spec(O[f−1])-scheme

X admits a ΛP,S-structure if and only if X ×S Spec(K) = q1≤i≤nSpec(Li)

where each Li is a finite abelian extension of K. Moreover, in this case the

ΛP,S-structure is unique and any morphism of finite étale ΛP,S-schemes is a

ΛP,S-morphism.

Proof. — Let X → S be a finite étale morphism. Then X ×S Spec(K) =

qi∈ISpec(Li) with Li/K a finite extension and X
∼−→ qiXi where Xi =

Spec(OLi [f
−1]). If X → S has a ΛP,S-structure then for each prime p ∈ P =

Id
(f)
OK

, the Frobenius lift ψp
X : X → X fixes the fibre of each Xi over Spec(Fp)

so that ψp
X maps each Xi to itself. It follows that the ΛP,S-structure on X

is induced by unique ΛP,S-structures on each Xi and so we may assume that

X = Xi is connected. In this case, write X = Spec(OL[f−1]) with L/K a finite

extension. If P is a prime of L laying over the prime p then there is a unique

automorphism

σP,L/K : X→ X

whose restriction to fibre over Spec(OL/P) is equal to the Np-power Frobenius

automorphism. But ψp
X also has this property and so σP,L/K = ψp

X. As the

maps ψp
X = σP,L/K commute and generate the group G(L/K) it follows that

G(L/K) is abelian. Moreover, the uniqueness of σP,L/K = σp,L/K = ψp
X shows

that the ΛP-structure on X is unique, is also a ΛP,S-structure and that any

morphism of finite étale ΛP,S-schemes is a ΛP,S-morphism.

Conversely, if each Li/K is abelian then there is a unique automorphism

σp,Li/K : Xi → Xi

lifting the Np-power Frobenius automorphism of the fibre over Spec(Fp). It

follows that setting ψp
X = qi∈IσLi/K,p defines a Frobenius lift on X. Moreover,

as G(Li/K) is abelian these Frobenius lifts commute and so define a ΛP,S-

structure on X.
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3.4.7 Remark. — In the notation of (3.4.6) if X → S is a finite étale ΛP-

scheme then its Frobenius lifts ψa
X for a ∈ P will be denoted by σS,a, or just

σa. This agrees with (or extends) the conventions set up in (1.3.1).

3.5. Ghosts and coghosts

3.5.1 Proposition. — Let X be a sheaf. For each a ∈ P the length-a ghost

map

ga : Γ∗a(X)→W∗
a(X)

is surjective on geometric points and so is the full ghost map

g : Γ∗(X)→W∗(X).

Proof. — Writing X = colim Spec(A) as a colimit of affine schemes, and

W∗(X) = colima W∗
a(X) and Γ∗(X) = colima Γ∗a(X) it is enough to show this

for

Spec(Γa(A)) = Γ∗a(Spec(A))→ Spec(Wa(A)) = W∗
a(Spec(A)).

But the map Wa(A) → Γa(A) is integral with nilpotent kernel (Proposition

8.1 of [4]) and therefore

Spec(Γa(A))→ Spec(Wa(A))

is surjective on geometric points.

3.5.2 Proposition. — If S is an ind-affine scheme, and T an affine étale

W∗(S)-sheaf then the sequence

T(W∗(S))
T(g)

// T(Γ∗(S)) //
// T(Γ∗(S)×W∗(S) Γ∗(S))

is an equaliser.

Proof. — As W∗(S) = colima∈P W∗
a(S) and Γ∗(S) = colima∈P Γ∗a(S) and fil-

tered colimits are exact, we may replace W∗(S) and Γ∗(S) and T with W∗
a(S),

Γ∗a(S) and T×W∗(S) W∗
a(S) respectively. Now writing S as a filtered colimit of

affine schemes we may assume that S is affine in which case the claim follows

as Γ∗a(S)→W∗
a(S) is integral and surjective, and therefore an effective descent

map for the category of affine étale schemes.

3.5.3 Remark. — In order for (3.5.2) to be useful in applications we should

say something about the fibre product W∗(S)×Γ∗(S) W∗(S). Let p be a prime

ideal, a any ideal, n ≥ 1 an integer and write Sp = S ×Spec(O) Spec(Fp) and

consider the two maps (where the inclusions are the obvious ones)

r
(1)
a,pn : Sp ⊂ S

gapn−→ Γ∗(S) and r
(2)
a,pn : Sp

FrNpn

Sp−→ Sp ⊂ S
ga→ Γ∗(S).

Then for i, j ∈ {1, 2} the two compositions
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Sp

(r
(i)
a,pn ,r

(j)
a,pn )

// Γ∗(S)×W∗(S) Γ∗(S) //
// W∗(S)

are equal and the morphism∐
i 6=j∈{1,2}

∐
a,pn

Sp

(r
(i)
a,pn ,r

(j)
a,pn )

−→ Γ∗(S)×W∗(S) Γ∗(S)

defines a nilpotent immersion onto the complement of the diagonal in Γ∗(S)×W∗(S)

Γ∗(S) (this follows by an iterated application of 17.1 [5]). Therefore, in the

notation of (3.5.2) an element of T(Γ∗(S)) is in the image of T(W∗(S)) →
T(Γ∗(S)) if and only if for all prime ideals p, ideals a, integers n ≥ 0 and pairs

i 6= j ∈ {1, 2}, it is equalised by the maps

T(Γ∗(S))

T(r
(i)
a,pn )

//

T(r
(j)
a,pn )

// T(Sp).

3.5.4 Lemma. — If X is a scheme with the property that every finite set of

points of X is contained in an open affine sub-scheme of X then for each a ∈ P

the length-a coghost map

γ≤a : Wa∗(X)→ Γa∗(X)

is affine.

Proof. — The property satisfied by X implies that there is an open affine cover

(Xi)i∈I of X such that (Γa∗(Xi))i∈I is an open cover of Γa∗(X) (recall that Γa∗
of a sheaf X is just a finite product of copies of X). However, the diagram

Wa∗(Xi)
γ≤a

//

��

Γa∗(Xi)

��

Wa∗(X)
γ≤a

// Γa∗(X)

(3.5.4.1)

is cartesian by Proposition 12.2 of [5] ([5] also assumes that the open immer-

sions Xi → X are closed but the proof that the diagram (3.5.4.1) is cartesian

does not use this assumption) and the top morphisms is affine. As (Γa∗(Xi))i∈I

is a cover of Γa∗(X) it follows that the bottom row of (3.5.4.1) is affine.

3.5.5. Let S be a Λ-sheaf and X an S-group sheaf. Then to equip X with a

ΛS-structure making it a ΛS-sheaf in groups over S is equivalent to equipping

it with a ΛS-structure such that the defining structure map

hX/S : X→W∗(X)×W∗(S) S

is a homomorphism of S-groups (recall the W∗ being a right adjoint preserves

limits so that W∗(X) is a ΛW∗(S)-sheaf of groups over W∗(S)).
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3.5.6 Lemma. — Let S = colimi∈I Si be a Λ-ind-affine scheme, f : X → S

be an ét-sheaf over S and a ∈ P. If for each i ∈ I, setting Xi = X ×S Si, the

length-a coghost map

γ≤a : Wa∗(Xi)→ Γa∗(Xi)

is affine then the length-a relative coghost map

γX/S,≤a : Wa∗(X)×Wa∗(S) S→ Γa∗(X)×Γa∗(S) S

is affine.

Proof. — The morphism γX/S,≤a if affine if and only if the morphisms

γX/S,a ×S Si

are affine for each i ∈ I. Fixing such an i, as Si is affine (in particular, quasi-

compact) and

colim
i

W∗
a(Si) = Wa∗(colim

i
Si)

(by (iv) of (3.3.2)) there is some j ∈ I such that Si →Wa∗(S) factors through

Wa∗(Sj)→Wa∗(S). Therefore, we can factor γX/S,a ×S Si as the composition

Wa∗(Xj)×Wa∗(Sj) Si →Wa∗(Xj)×Γa∗(Sj) Si → Γa∗(Xj)×Γa∗(Sj) Si

where the first map is induced by Wa∗(Sj) → Γa∗(Sj), which is affine as

Wa∗(Sj) → Γa∗(Sj) is affine, and the second is γ≤a ×Γa∗(Sj) Si which is affine

as γXj ,a is affine by hypothesis. Therefore, γX/S,a ×S Si is affine and we are

done.

3.5.7 Proposition. — Let S be an Λ-ind-affine scheme, let A and A′ be a

pair of abelian schemes over S and let f : A→ A′ be an S-homomorphism. If

f is a ΨS-morphism then it is a ΛS-morphism.

Proof. — Write S = colimi∈I Si as a filtered colimit of affine schemes. By

Theorem 1.9 of Chapter I of [21], for each i ∈ I and a ∈ P, the Si-scheme

A′ ×S Si satisfies the hypotheses of (3.5.4) so that we may apply (3.5.6) to

deduce that the relative coghost homomorphism of length a

γA′/S,a : Wa∗(A
′)×Wa∗(S) S→ Γa∗(A

′)×Γa∗(S) S

is affine. Taking the limit over a we see that

γA′/S : W∗(A
′)×W∗(S) S→ Γ∗(A

′)×Γ∗(S) S

is affine. Now let the ΛS-structures on A and A′ be given by the S-homomorphisms

hA/S : A→W∗(A)×W∗(S) S and hA′/S : A′ →W∗(A
′)×W∗(S) S

and let f : A→ A′ be a ΨS-homomorphism. By hypothesis, the difference

hA′/S ◦ f − (W∗(f)×W∗(S) S) ◦ hA/S : A→W∗(A
′)×W∗(S) S
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factors through the kernel of the relative coghost homomorphism γA/S. How-

ever, the kernel of γA/S is affine over S and any homomorphism from an abelian

S-scheme to an S-affine scheme is trivial. Therefore,

hA′/S ◦ f − (W∗(f)×W∗(S) S) ◦ hA/S = 0

and f is a ΛS-homomorphism.

3.5.8 Remark. — It follows from (3.5.7) above that if A is an abelian variety

over an Λ-ind-affine scheme S then any two ΛS-structures on A, compatible

with the group law, coincide if and only if the underlying ΨS-structures coin-

cide.



CHAPTER 4

CM ELLIPTIC CURVES AND Λ-STRUCTURES

In this chapter we explain the connection between CM elliptic curves and

Λ-structures. The first and main result being, essentially, that the moduli

stack of CM elliptic curves MCM admits a Λ-structure. The observant reader

will have noticed that we have not defined what it means for a stack to have a

Λ-structure and we do not propose to do so here (not because we cannot but

only because to do so would involve various 2-categorical issues that would

in this instance serve only to make matters more complicated than they need

be). However, we shall explain what we mean to prove.

We continue with the set-up in (2.2.1). So that all sheaves considered are al-

ways over Spec(OK) and we will use the theory of Chapter 3 with Λ-structures

relative to the full monoid of ideals IdOK
(later we will also consider sub-

monoids).

Recall that to give a ét-sheaf X a Λ-structure is to give for each ét-sheaf S,

a map

hX(S) : X(S)→ X(W∗(S))

which is functorial in S and such that:

(i) the composition

X(S)
hX(S)→ X(W∗(S))

X(g(1))→ X(S)

is the identity and

(ii) the two compositions

X(S)
hX(S)

// X(W∗(S))
X(µW∗(S))

//

hX(W∗(S))

// X(W∗(W∗(S)))

are equal.

To this end we show that given an ind-affine scheme S and an element

of MCM(S), i.e. a CM elliptic curve E/S, there is a functorially associated

element of MCM(W∗(S)), i.e. a CM elliptic curve W∗
CM(E)/W∗(S), satisfying

the following properties:
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(i) the pull-back of W∗
CM(E) along the ghost component at (1) is canonically

isomorphic to E:

E
∼−→ g∗(1)(W

∗
CM(E)) = W∗

CM(E)×W∗(S) S,

(ii) the pull-back of W∗
CM(E) along µS : W∗(W∗(S))→W∗(S) is canonically

isomorphic to W∗
CM(W∗

CM(E)):

µ∗S(W∗
CM(E)) = W∗

CM(E)×W∗(S) W∗(W∗(S))
∼−→W∗

CM(W∗
CM(E)).

We call W∗
CM(E)/W∗(S) the canonical lift of E/S. In addition to (i) and (ii)

above, we also show that the CM elliptic curve W∗
CM(E) admits a canonical

ΛW∗(S)-structure. It is worth pointing out that these ‘canonical lifts’ are both

global and big – the base is S is an arbitrary ind-affine scheme over Spec(OK)

and the Witt vectors over which we lift the CM elliptic curves have Frobenius

lifts at all primes of OK.

We now give a brief overview of each of the sections. The construction of

W∗
CM(E)/W∗(S) and the verification of its properties is the content of §1. We

also use this to define what it means for a CM elliptic curve over Λ-ind-affine

scheme E/S to have a canonical Λ-structure (what we really do is define what

it means for a morphism

S
E→MCM

corresponding to a CM elliptic curve E/S to be a Λ-morphism).

In §2 we consider a certain special class of CM elliptic curves (those of

‘Shimura type’) and show that they are exactly those admitting Λ-structures.

These curves were first defined and studied by Shimura ([33]), and subse-

quently by several other authors with particular reference to their L-functions

(see [13], [17] and [30]). We finish §2 by showing that many CM elliptic curves

of Shimura type admit global minimal models. This gives a broad generali-

sation of a result of Gross [22]. The proof we give is quite different to that

in [22] and relies ons a certain strengthening (A.4.8) of an old principal ideal

theorem (valid for arbitrary number fields).

In §3 we show how to (intelligently) construct the quotient of the universal

CM elliptic curve by its group of automorphisms and we show that this curve

descends to a smooth projective curve X→ MCM over the coarse sheaf MCM.

We also show that this descended curved admits a ΛMCM
-structure and that

this ΛMCM
-structure can be used to construct the maximal abelian extension

of K in a natural way. This gives a canonical, integral and Λ-theoretic version

of the explicit generation of the ray class fields of K using Weber functions

of CM elliptic curves over fields. We end this section by showing that the

possibly mysterious curve X is non-other than P1
MCM

.

In §4 we use the results of §1 and §2 to construct a flat affine formally

smooth presentation MW
CM →MCM of MCM. The flat affine formally smooth

scheme MW
CM has a natural moduli theoretic interpretation, and is also a torsor
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under a certain affine flat affine group scheme CLW
OK

. Finally, we show that

MW
CM admits a natural Λ-structure compatible with that on MCM.

In §5 we exhibit a rather interesting relationship between a (variant of) the

canonical lift of an CM elliptic curve (over an arbitrary base) and its Tate

module. This gives an analogue for CM elliptic curves of a certain construc-

tion in p-adic Hodge theory involving Lubin–Tate O-modules and we end by

sketching a certain analytic analogue.

4.1. Canonical lifts of CM elliptic curves

We continue with the set-up of Chapter 2, so that we work over the base

scheme Spec(OK) where OK is the ring of integers of an imaginary quadratic

field. In order to apply the theory of Chapter 3, we will no longer be work-

ing with arbitrary sheaves S ∈ ShOK
but only with ind-affine schemes S ∈

IndAffOK
⊂ ShOK

.

By a Λ-structure is meant one relative to the Dedekind domain OK and to

the full set of ideals P = IdOK
.

We note that if S is an ind-affine scheme then W∗(S) is again an ind-

affine scheme and therefore a sheaf for the fpqc topology. Moreover, W∗(S) =

lima∈IdOK
Wa∗(S) is an inverse limit of ind-affine schemes (as Wa∗ commutes

with filtered colimits and sends affine schemes to affine schemes) and is also a

sheaf for the fpqc topology.

For technical reasons we also work with the affine étale topology on IndAffOK

whose covers are given by families of affine étale morphisms (Si → S)i∈I which

are covers when viewed in ShOK
(or equivalently Shét

OK
).

We shall also continue to work with the fibred category MCM but from

here on view it as a fibred category over the category of ind-affine schemes

IndAffOK
⊂ ShOK

, rather than all of ShOK
.

Unless otherwise noted S will denote an arbitrary ind-affine scheme.

4.1.1. Denote by LCM the rank one OK-local system over Γ∗(Spec(OK))

whose fibre over the ghost component at a ∈ IdOK
is the constant sheaf a−1,

i.e.

LCM =
∐

a∈IdO

a−1 →
∐

a∈IdO

Spec(OK) = Γ∗(Spec(OK)).

For an ind-affine scheme S we shall abuse notation and write LCM for the

rank one OK-local system over Γ∗(S) obtained by pulling back LCM along

Γ∗(S)→ Γ∗(Spec(OK)).

4.1.2. Let E→ S a CM elliptic curve . Writing pS : Γ∗(S)→ S for the map∐
a∈IdOK

idS : Γ∗(S) =
∐

a∈IdOK

S→ S,
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we define a new CM elliptic curve over Γ∗(S) by

Γ∗CM(E) = p∗S(E)⊗OK
LCM.

In other words, we have

Γ∗CM(E) =
∐

a∈IdOK

E⊗OK
a−1 →

∐
a∈IdOK

S = Γ∗(S).

If f : E→ E′ is a homomorphism of CM elliptic curves over S then we write

Γ∗CM(f) = p∗S(f)⊗OK
LCM : Γ∗CM(E)→ Γ∗CM(E′)

so that Γ∗CM defines a functor from the category of CM elliptic curves over S

to the category of CM elliptic curves over Γ∗(S).

By construction, the rank one OK-local system LCM over Γ∗(S) satisfies

LCM ⊗OK
a−1 = ψa∗(LCM) for each ideal a and this induces isomorphisms

Γ∗CM(E)⊗OK
a−1 ∼−→ ψa∗(Γ∗CM(E)).

We equip Γ∗CM(E) with the ΨΓ∗(S)-structure with the relative endomorphisms

given for each ideal a by the composition

Γ∗CM(E)
ia→ Γ∗CM(E)⊗OK

a−1 ∼−→ ψa∗(Γ∗CM(E)).

In order to avoid overly cumbersome notation, we will denote this map by ϕa
E/S

(instead of by the usual by monstrous ψa∗
Γ∗CM(E)/Γ∗(S)). Note that ker(ϕa

E/S) =

Γ∗CM(E)[a].

The sheaf of rings OKΓ∗(S)
= Γ∗(OKS

) is naturally a sheaf of ΨΓ∗(S)-rings

and the OKΓ∗(S)
-module structure

OKΓ∗(S)
× Γ∗CM(E)→ Γ∗CM(E)

is compatible with the ΨΓ∗(S)-structures.

If S′ → S is a morphism there is a obvious isomorphism of CM elliptic curves

over Γ∗(S′) equipped with ΨΓ∗(S′)-structures

Γ∗CM(E)×Γ∗(S) Γ∗(S′)
∼−→ Γ∗CM(E×S S′).

4.1.3. Write Γ∗(MCM)Ψ for the fibred category over IndAffOK
whose fibre

over S is the essential image of the functor E/S 7→ Γ∗CM(E)/Γ∗(S) from CM

elliptic curves over S to CM elliptic curves over Γ∗(S) equipped with ΨΓ∗(S)-

structures compatible with their OKΓ∗(S)
-module structure. The pull-back

maps for S′ → S are given by

E/Γ∗(S) 7→ E×Γ∗(S) Γ∗(S′)/Γ∗(S′).
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4.1.4 Remark. — The symbol Γ∗(MCM)Ψ is only notation but it supposed

to inspire the following interpretation. Assuming MCM did admit a Λ-structure,

and so a fortiori a Ψ-structure, then we should have equivalences

MCM(S) = Hom(S,MCM)
∼−→ HomΨ

Spec(OK)(Γ
∗(S),MCM) = Γ∗(MCM)Ψ(S).

Of course, we do not define a Ψ-structure on MCM. Instead we opt to define

which morphisms (equivalently CM elliptic curves E/Γ∗(S))

Γ∗(S)
E→MCM

should be though of as (coming from) Ψ-morphisms. The following gives some

justification to this.

4.1.5 Lemma. — The functor

MCM → Γ∗(MCM)Ψ : E/S 7→ Γ∗CM(E)/Γ∗(S)

is an equivalence of stacks with quasi-inverse given by pull-back along the ghost

component at (1)

E/Γ∗(S) 7→ g∗(1)(E)/S.

Proof. — The functor in question is clearly essentially surjective and faithful

as composing it with

E/Γ∗(S) 7→ g∗(1)(E)/S

yields a functor isomorphic to the identity on MCM. Now to see that it is an

equivalence, and that E/Γ∗(S) 7→ g∗(1)(E)/S is a quasi-inverse, we need only

show that it is full.

So let f : Γ∗CM(E) → Γ∗CM(E′) be a ΨΓ∗(S)-isomorphism and write f as the

sum of its ghost components

f =
∐

a∈IdOK

g∗a(f).

As f is a ΨΓ∗(S)-homomorphism the diagram

E
g∗
(1)

(f)
//

ia
��

E′

ia
��

E⊗OK
a−1

g∗a (f)
// E′ ⊗OK

a−1

commutes for each a ∈ IdOK
by the definition of Γ∗CM(E) and Γ∗CM(E′) and

their ΨΓ∗(S)-structures. However, as ia is epimorphism the only map g∗a(f) for

which this is possible is g∗(1)(f)⊗OK
a−1. It follows that

f =
∐

a∈IdOK

g∗(1)(f)⊗OK
a−1 = Γ∗CM(g∗(1)(f))

and we are done.
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4.1.6. Let E/W∗(S) be a CM elliptic curve equipped with a ΛW∗(S)-structure

compatible with its OKW∗(S)
= W∗(OKS

)-module structure. We say that the

ΛW∗(S)-structure on E/W∗(S) is canonical if there exists a ΨΓ∗(S)-isomorphism

E×W∗(S) Γ∗(S)
∼−→ Γ∗CM(g∗(1)(E))

inducing the identity on g∗(1)(E) after pull-back along g(1) : S → Γ∗(S). Such

an isomorphism is unique by (4.1.5) and so, when it exists, we shall denote it

by ρE/W∗(S).

4.1.7 Lemma. — Let E/W∗(S) be a CM elliptic curve.

(i) E admits at most one canonical ΛW∗(S)-structure.

(ii) If S′ → S is a morphism of ind-affine schemes then, writing E′ =

E×W∗(S) W∗(S′), the ΛW∗(S′)-structure on E′ is canonical and

ρE/W∗(S) ×Γ∗(S) Γ∗(S′) = ρE′/W∗(S′).

(iii) Let (Si → S)i∈I be an affine étale cover in IndAffOK
. If E×W∗(S) W∗(Si)

admits a canonical ΛW∗(Si)-structure for each i ∈ I then E/W∗(S) admits

a canonical ΛW∗(S)-structure.

Proof. — (i) Let E/W∗(S) have a pair of canonical ΛW∗(S)-structures and

write ρE/W∗(S),1 and ρE/W∗(S),2 for the corresponding unique isomorphisms

E×W∗(S) Γ∗(S)
∼−→ Γ∗CM(g∗(1)(E))

inducing the identity on g∗(1)(E) after pull-back along g(1) : S → Γ∗(S). The

composition

ρ−1
E/W∗(S),1 ◦ ρE/W∗(S),2

defines an ΨΓ∗(S)-automorphism of Γ∗CM(g∗(1)(E)) which is the identity on g∗(1)(E)

after pull-back along g(1) and so is the identity itself by (4.1.5).

It follows that the two ΨΓ∗(S)-structures on each E ×W∗(S) Γ∗(S), induced

by the two ΛW∗(S)-structures on E and E′, are equal. Writing

ψp
E/W∗(S),1, ψ

p
E/W∗(S),2 : E→ ψp∗(E)

for the relative Frobenius lifts at p corresponding to the two ΛW∗(S)-structures,

we have shown that

ψp
E/W∗(S),1 ×W∗(S) Γ∗(S) = ψp

E/W∗(S),2 ×W∗(S) Γ∗(S).

As Γ∗(S) → W∗(S) is surjective on geometric points (3.5.1), it follows by

rigidity that

ψp
E/W∗(S),1 = ψp

E/W∗(S),2.

Therefore, the two ΨW∗(S)-structures on E/W∗(S) induced by the two ΛW∗(S)-

structures are equal and by (3.5.8) it follows that the two ΛW∗(S)-structures

themselves are equal.
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(ii) The CM elliptic curve E′ := E ×W∗(S) W∗(S′) has a natural ΛW∗(S′)-

structure and the pull-back of ρE/W∗(S) along Γ∗(S′)→ Γ∗(S) defines a ΨΓ∗(S′)-

isomorphism

E′×W∗(S′)Γ
∗(S′) = E×W∗(S)Γ

∗(S′)
ρE/W∗(S)×Γ∗(S)Γ∗(S′)

−→ Γ∗CM(g∗(1)(E))×Γ∗(S)Γ
∗(S′) = Γ∗CM(g∗(1)(E

′))

inducing the identity after pull-back along g(1). It follows by uniqueness of

such an isomorphism that

ρE/W∗(S) ×Γ∗(S) Γ∗(S′) = ρE′/W∗(S′).

(iii) We will first show that E/W∗(S) admits a unique ΛW∗(S)-structure

inducing the canonical ΛW∗(Si)-structures on E×W∗(S) W∗(Si) and then show

that this ΛW∗(S)-structure is canonical. The family (W∗(Si)→W∗(S))i∈I is a

cover in Shét
Λ and we have

W∗(Sij) := W∗(Si ×S Sj)
∼−→W∗(Si)×W∗(S) W∗(Sj)

by (3.3.13). By (ii) above, the two ΛW∗(Sij)-structures on

E×W∗(S) W∗(Sij)

induced by pull-back are canonical and by (i) they are equal. By (3.4.4), this

defines an element of the equaliser

ΛE/W∗(S)(W
∗(S)) // ΛE/W∗(S)(W

∗(Si))
//
//
∏
i,j∈I

ΛE/W∗(S)(W
∗(Sij))

or in other words, there is a unique ΛW∗(S)-structure on E/W∗(S) inducing

the canonical ΛW∗(Si)-structures on each E ×W∗(S) W∗(Si). The uniqueness

of the isomorphisms ρE×W∗(S)W
∗(Si)/W∗(Si) and their compatibility with pull-

backs (this is (ii) above) show that they descend to an ΨΓ∗(S)-isomorphism

ρE/W∗(S) : E×W∗(S) Γ∗(S)
∼−→ Γ∗CM(g∗(1)(E))

inducing the identity after pull-back along g(1) so that the ΛW∗(S)-structure

on E/W∗(S) is canonical.

4.1.8. Using (4.1.7) we may define a fibred category W∗(MCM)Λ over IndAffOK

by setting the fibre over S to be the category of CM elliptic curves E/W∗(S)

equipped with a canonical ΛW∗(S)-structure and whose pull-back maps for

S′ → S are given by

E/W∗(S) 7→ E×W∗(S) W∗(S′).

4.1.9 Remark. — As with Γ∗(MCM)Ψ the symbol W∗(MCM)Λ is supposed

to inspire in the reader the idea that MCM admits some Λ-structure and that

we have

MCM(S) = HomSpec(OK)(S,MCM)
∼−→ HomΛ

Spec(OK)(W
∗(S),MCM) = W∗(MCM)Λ(S).
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4.1.10 Lemma. — The fibred category W∗(MCM)Λ over IndAffOK
is a stack

for the affine étale topology.

Proof. — Let (Si → S)i∈I be an affine étale cover and let (Ei/W
∗(Si))i∈I be

a collection of objects of W∗(MCM)Λ equipped with descent data relative to

the cover (Si → S)i∈I. By (ii) of (3.3.13) we have

W∗(Sij) := W∗(Si ×S Sj)
∼−→W∗(Si)×W∗(S) W∗(Sj)

an so we may view the objects (Ei/W
∗(Si))i∈I of W∗(MCM)Λ equipped with

their descent data relative to the affine étale cover (Si → S)i∈I as objects

of MCM equipped with descent data relative to the fpqc cover (W∗(Si) →
W∗(S))i∈I. As MCM is a stack over ShOK

(2.1.2), the family (Ei/W
∗(Si))i∈I

descends to a CM elliptic curve E/W∗(S) unique upto compatible isomor-

phisms E ×W∗(S) W∗(Si)
∼−→ Ei. It remains to see that E/W∗(S) admits a

canonical ΛW∗(S)-structure and this follows from (iii) of (4.1.7).

In much the same way, using (3.3.13) and (3.4.3), Λ-isomorphisms of CM

elliptic curves with canonical Λ-structures also satisfy descent for the affine

étale topology and we find that W∗(MCM)Λ is a stack over IndAffOK
.

4.1.11 Theorem. — The functor induced by base change along the ghost

component at (1)

W∗(MCM)Λ →MCM : E/W∗(S) 7→ g∗(1)(E)/S

is an equivalence of stacks over IndAffOK
for the affine étale topology.

Proof. — The functor in question factors as

W∗(MCM)Λ → Γ∗(MCM)Ψ →MCM

where the first functor is E/W∗(S) 7→ E ×W∗(S) Γ∗(S)/Γ∗(S) and the second

is pull-back along g(1) : S → Γ∗(S). By (4.1.5) the second functor is an

equivalence and, as Γ∗(S)→W∗(S) is surjective on geometric points, the first

functor is faithful by rigidity. Therefore,

W∗(MCM)Λ →MCM

is faithful.

Now fix a pair E,E′/W∗(S) of CM elliptic curves equipped with canonical

ΛW∗(S)-structures and let f : E ×W∗(S) Γ∗(S) → E′ ×W∗(S) Γ∗(S) be a ΨΓ∗(S)-

isomorphism. Let p be a prime ideal, a any ideal and n ≥ 0 an integer.
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Consider the diagram:

g∗a(E)
g∗a (f)

//

g∗a (ψpn

E )
��

g∗a(E′)

(g∗a (ψpn

E′ )
��

g∗apn(E)
g∗apn (f)

//

o
��

g∗apn(E′)

o
��

FrNpn∗
S

(g∗a(E))
FrNpn∗

S
(g∗a (f))

// FrNpn∗
S

(g∗a(E′)),

(4.1.11.1)

where the bar denotes pull-back along S = S ×Spec(OK) Spec(Fp) → S and

the bottom vertical isomorphisms are the unique such making the vertical

compositions equal to the Npn-power relative Frobenius morphisms of g∗a(E)

and g∗a(E′) respectively (such isomorphisms exist as ψpn

E : E → E and ψpn

E′ :

E′ → E′ lift the Npn-power Frobenius). As f is a ΨΓ∗(S)-morphism, the top

square of (4.1.11.1) commutes and, by functoriality of the Npn-power relative

Frobenius, the outer square commutes. As g∗a(ψpn

E ) is an epimorphism, it

follows that the bottom square of (4.1.11.1) also commutes. We will show

that this implies that the functor

W∗(MCM)Λ →MCM

is full.

For the functor to be full, it is enough to show that the (injective) map

IsomOK,Λ
W∗(S)(E,E

′)→ IsomOK,Ψ
Γ∗(S)(EΓ∗(S),E

′
Γ∗(S))

is surjective (where the super script Λ and Ψ denote Λ- and Ψ-morphisms).

Now to show this, it is enough to show that each ΨΓ∗(S)-isomorphism

f : EΓ∗(S) → E′Γ∗(S)

is obtained via pull-back from an isomorphism E→ E′ over W∗(S) as by (3.5.7)

it will follow that any such isomorphism E→ E′ is also a ΛW∗(S)-isomorphism.

Applying (3.5.2) and (3.5.3) to the finite étale W∗(S)-sheaf

IsomOK

W∗(S)(E,E
′),

we see that f comes from a morphism E → E′ over W∗(S) if and only if,

for each prime p, each ideal a and each n ≥ 0, the two pull-backs of f to

S := S×Spec(OK) Spec(Fp) along the maps

S ⊂ S
gapn−→ Γ∗(S) and S

FrNpn

S−→ S ⊂ S
ga→ Γ∗(S)

of (3.5.3) are equal. This is precisely the commutativity of the bottom square

of the diagram (4.1.11.1) and therefore

W∗(MCM)Λ →MCM



96 CHAPTER 4. CM ELLIPTIC CURVES AND Λ-STRUCTURES

is full.

Finally, for the functor in question to be an equivalence it is enough (as

both categories are stacks and we have already shown that it is fully faithful)

to show that for each ind-affine scheme S and each CM elliptic curve E/S there

is an affine étale cover (Si → S)i∈I such that E×S Si is in the essential image

of

W∗(MCM)Λ →MCM.

By (2.2.12) the family of S-sheaves

(IsomOK
S (E[f],OK/fS)→ S)f

indexed by integral ideals f which separate units forms an affine étale cover of

S. We may then base change to any element of this cover and assume that E/S

admits a level-f structure for some integral ideal f which separates units, and

then we may assume that E/S = E(f)/M
(f)
CM. This case is (4.1.12) below.

4.1.12 Lemma. — Let f ∈ IdOK
separate units. The universal CM elliptic

curve with level f-structure E(f) → M
(f)
CM is in the essential image of the functor

W∗(MCM)Λ →MCM.

Proof. — Write M = M
(f)
CM, E = E(f) and P = Id

(f)
OK

and let P′ ⊂ IdOK
be the

sub-monoid generated by the prime ideals dividing f so that P ∩ P′ = {OK}
and IdOK

= P · P′.
Then the finite étale Spec(OK[f−1])-scheme M admits a unique ΛP-structure

by (3.4.6). By the definition of the automorphisms σp = [p−1]f : M→ M there

exists a unique f-isomorphism

E⊗OK
p−1 ∼−→ σ∗p(E)

whose pull-back along M× Spec(Fp)→ M is the isomorphism νp of (2.6.5). It

follows that setting ψp
E/M : E→ σ∗p(E) to be the composition

E
ip→ E⊗OK

p−1 ∼−→ σ∗p(E)

defines a lift of the relative Np-power Frobenius on E → M. Note that

ker(ψp
E/M) = E[p]. Let l ∈ P be another prime ideal and consider the dia-

gram

E
ψp

E/M
//

ψl
E/M

��

σ∗p(E)

σ∗p (ψl
E/M

)

��

σ∗l (E)
σ∗l (ψp

E/M
)
// σ∗pl(E).

(4.1.12.1)

The kernel of the compositions along the top and right, and left and bottom of

(4.1.12.1) are both equal to E[pl] so that, as M is connected, these compositions

differ by scaling by some ε ∈ O×K. As the f-torsion E[f] is constant over M,

and M
∼−→ Spec(OK(f)[f

−1]), it admits a unique ΛP,M-structure by (3.4.6).
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The uniqueness of the ΛP,M-structure on E[f] now implies that the diagram

(4.1.12.1) commutes when restricted to the f-torsion and therefore ε ∈ O×,fK .

However, f separates units, so that ε ∈ O×,fK = {1} and (4.1.12.1) commutes.

As E is flat over Spec(OK) this defines a ΛP,M-structure on E by (3.3.12).

Pulling-back E → M along the map Γ∗P(M) → M corresponding to the

ΨP-structure on M, we obtain an isomorphism of CM elliptic curves

E×M Γ∗P(M) =
∐
a∈P

σ∗a(E)
∼−→
∐
a∈P

E⊗OK
a−1 ∼−→ Γ∗CM(E)×Γ∗(M) Γ∗P(M)

compatible with the ΨP,Γ∗P(M)-structures. We then get a ΨΓ∗(M)-isomorphism

Γ∗CM(E)
∼−→
∐
b∈P′

(E×M Γ∗P(M))⊗OK
b−1

inducing the identity after pull-back along g(1) and where on the right hand

side the relative Frobenius lifts for p ∈ P′ are defined in the obvious way.

Now set ẼP := E ×M W∗
P,M(M) where we have base changed along the

map µM : W∗
P(M) → M defining the ΛP-structure on M. Then ẼP has a

ΛP,W∗P(S)-structure by virtue of the facts that E/M has a ΛP,M-structure and

W∗
P(M)→ M is a ΛP-morphism. We also have ΨΓ∗P(S)-isomorphisms

ẼP ×W∗P(S) Γ∗P(S)
∼−→ E×M Γ∗P(S)

∼−→ Γ∗CM(E)×Γ∗(M) Γ∗P(M) (4.1.12.2)

inducing the identity after pull-back along the first ghost component.

Finally, setting

Ẽ :=
∐
b∈P′

ẼP ⊗OK
b−1 →

∐
b∈P′

W∗
P(M) = W∗(M)

and defining relative Frobenius lifts on Ẽ for the primes p ∈ P′ in the obvi-

ous way equips Ẽ with a ΛW∗(S)-structure. Again by construction we have a

ΨΓ∗(M)-isomorphism of CM elliptic curves

Ẽ×W∗(M) Γ∗(M)
∼−→ Γ∗CM(E)

inducing the identity after pull-back along the ghost component at (1). There-

fore the ΛW∗(M)-structure so defined on Ẽ/W∗(M) is canonical and E→ M is

in the essential image of the functor

W∗(MCM)Λ →MCM.

4.1.13. We now fix for all time an inverse equivalence

MCM →W∗(MCM)Λ : E/S 7→W∗
CM(E)/W∗(S)

to the functor W∗(MCM,Λ)→MCM and call W∗
CM(E)/W∗(S), equipped with

its canonical ΛW∗(S)-structure, the canonical lift of E/S.
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4.1.14 Remark. — We note for future reference that the proof of (4.1.12)

shows that the CM elliptic curve E(f)/M
(f)
CM admits a Λ

P,M
(f)
CM

-structure and

that this Λ
P,M

(f)
CM

-structure has the property that there exists a Λ
P,W∗P(M

(f)
CM)

-

isomorphism

W∗
CM(E(f))×

W∗(M
(f)
CM)

W∗
P(M

(f)
CM)

∼−→ E(f) ×
M

(f)
CM

W∗
P(M

(f)
CM) = µ∗

M
(f)
CM

(E)

inducing the identity on E after pull-back to the ghost component at (1) (this

is (4.1.12.2)).

4.1.15. By virtue of the definition of W∗
CM(E)/W∗(S) we have a canonical

isomorphism

E
∼−→ g∗(1)(W

∗
CM(E)).

That is, the composition

MCM(S)
W∗CM→ MCM(W∗(S))

g∗
(1)→ MCM(S)

is canonically isomorphic to the identity. We will now show that the two

compositions

MCM(S)
W∗CM

// MCM(W∗(S))
W∗CM

//

µ∗
W∗(S)

// MCM(W∗(W∗(S)))

are also canonically isomorphic.

4.1.16 Proposition. — Let S be an ind-affine scheme and let E/S be a

CM elliptic curve. Then there is a unique isomorphism, compatible with the

ΛW∗(W∗(S))-structures,

µ∗W∗(S)(W
∗
CM(E))

∼−→W∗
CM(W∗

CM(E))

inducing the identity after pull-back along g(1) : W∗(S)→W∗(W∗(S)).

Proof. — Both µ∗W∗(S)(W∗
CM(E)) and W∗

CM(W∗
CM(E)) are equipped with

natural ΛW∗(W∗(S))-structures and the pull-backs of each along the ghost com-

ponent at (1) are equal to W∗
CM(E). Therefore, it is enough by (4.1.12) to

show that the ΛW∗(W∗(S))-structures on µ∗W∗(S)(W
∗
CM(E)) are W∗

CM(W∗
CM(E))

are canonical.
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For W∗
CM(W∗

CM(E)) this is true by definition. For µ∗W∗(S)(W
∗
CM(E)) we have

the sequence of ΨΓ∗(W∗(S))-isomorphisms

µ∗W∗(S)(W
∗
CM(E))×W∗(W∗(S)) Γ∗(W∗(S)) = (W∗

CM(E)×W∗(S) W∗(W∗(S)))×W∗(W∗(S)) Γ∗(W∗(S))

= W∗
CM(E)×W∗(S) Γ∗(W∗(S))

∼−→
∐
a

ψa∗(W∗
CM(E))

∼−→
∐
a

W∗
CM(E)⊗OK

a−1

∼−→ Γ∗CM(W∗
CM(E))

= Γ∗CM(g∗(1)(µ
∗
W∗(S)(W

∗
CM(E)))).

The resulting ΨΓ∗(W∗(S))-isomorphism

µ∗W∗(S)(W
∗
CM(E))×W∗(W∗(S)) Γ∗(W∗(S))

∼−→ Γ∗CM(g∗(1)(µ
∗
S(W∗

CM(E))))

induces the identity after pull-back along the ghost component at (1) and this

is precisely the definition of a canonical ΛW∗(W∗(S))-structure.

4.1.17. We now define what it means for a CM elliptic curve over an arbitrary

Λ-ind-affine scheme (not just those of the form W∗(S)) to have a canonical Λ-

structure.

It will be convenient later to allow ourselves the flexibility of working with

Λ-structures relative to a sub-monoid P ⊂ IdOK
generated by some set of

prime ideals and so we fix such a P.

Let S be an ΛP-ind-affine scheme and let E/S be a CM elliptic curve

equipped with a ΛP,S-structure (again compatible with its OKS
-module struc-

ture). We say that the ΛP-structure on E/S is canonical if there is a ΛP,W∗P(S)-

isomorphism

λE/S : E×S W∗
P(S)

∼−→W∗
CM(E)×W∗(S) W∗

P(S)

inducing the identity on the ghost components at (1). There is at most one

such isomorphism λE/S satisfying this condition and so we are safe to label

it. Indeed, any two differ by a ΛP,W∗P(S)-automorphism of W∗
CM(E) ×W∗(E)

W∗
P(E) inducing the identity on the ghost component at (1) and all such

automorphisms are the identity as this can be checked after pull-back along

Γ∗P(S)→W∗
P(S), and arguing as in the proof of (4.1.5) one sees that a ΨP,Γ∗P(S)-

automorphism of Γ∗CM(E)×Γ∗(S) Γ∗P(S) is equal to the identity if and only if i

t is after pull-back to the ghost component at (1).

4.1.18 Remark. — When P = IdOK
and E/W∗(S) is a CM elliptic curve

equipped with a ΛW∗(S)-structure then it follows from (4.1.16) that this ΛW∗(S)-

structure is canonical in the sense of (4.1.17) if and only if there exists a

ΛW∗(S)-isomorphism

f : E
∼−→W∗

CM(g∗(1)(E))
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inducing the identity after pull-back to the ghost component at (1), i.e. E/W∗(S)

is canonical in the sense of (4.1.6).

Indeed, if there exists such an isomorphism f : E
∼−→ W∗

CM(g∗(1)(E)) then

(4.1.16) gives an isomorphism λE/W∗(S) via the compositions

E×W∗(S) W∗(W∗(S))
f×W∗(S)W

∗(W∗(S))
−→ W∗

CM(g∗(1)(E))×W∗(S) W∗(W∗(S))

(4.1.16)−→ W∗
CM(W∗

CM(g∗(1)(E)))

W∗CM(f−1)
−→ W∗

CM(E).

Conversely, the pull-back of an isomorphism

λE/W∗(S) : E×W∗(S) W∗(W∗(S))
∼−→W∗

CM(E)

along g̃ = W∗(g(1)) : W∗(S) → W∗(W∗(S)) yields a ΛW∗(W∗(S))-isomorphism

f : E
∼−→W∗

CM(g∗(1)(E)) via

E
∼−→ g̃∗(E×W∗(S) W∗(W∗(S)))

g̃∗(λE/W∗(S))→ g̃∗(W∗
CM(E))

∼−→W∗
CM(g∗(1)(E)).

Hence the two notions of canonical ΛW∗(S)-structure on a CM elliptic curve

E/W∗(S) defined in (4.1.6) and (4.1.17) coincide.

4.1.19 Proposition. — Let S be an ΛP-ind-affine-scheme and E/S a CM

elliptic curve. Then:

(i) E/S admits at most one canonical ΛP,S-structure.

(ii) If S′ → S is a morphism of ΛP-ind-affine schemes, the ΛP,S′-structure on

E×S S′ is canonical and

λE/S ×W∗P(S) W∗
P(S′) = λE×SS′/S′ .

(iii) Let (Si → S)i∈I be a ét-cover of ΛP-ind-affine schemes. If E×S S′ admits

a canonical ΛP,Si-structure for each i ∈ I then E/S admits a canonical

ΛP,S-structure.

Proof. — (i) Let E/S admit two canonical ΛP,S-structures with corresponding

isomorphisms

λE/S, λ
′
E/S : E×S W∗

P(S)
∼−→W∗

CM(E)×W∗(S) W∗
P(S).

The difference

λ′E/S ◦ λ
−1
E/S : W∗

CM(E)×W∗(S) W∗
P(S)

∼−→W∗
CM(E)×W∗(S) W∗

P(S)

defines ΛP,W∗P(S)-automorphism of W∗
CM(E)×W∗(S)W

∗
P(S) which is the identity

on the first ghost component. Base changing along Γ∗P(S) → W∗
P(S) and

arguing again as in the proof of (4.1.5) we find that such an automorphism

must be the identity itself and so λE/S = λ′E/S.
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It follows now that the two ΛP,W∗P(S)-structures on E×S W∗
P(S) coincide so

that as W∗
P(S)→ S is an epimorphism and ΛP-structures descend (3.4.5) the

two ΛP,S-structures on E/S coincide.

(ii) This follows from the uniqueness of the isomorphisms λE/S.

(iii) As canonical ΛP-structures are unique and compatible with pull-back

(this is (ii) above) if E×S Si admits a canonical ΛP,Si-structure for each i ∈ I

it follows that E admits a ΛP,S-structure. As the isomorphisms making a ΛP-

structure canonical are unique and compatible with pull back (again this is

(ii)) the isomorphisms λE×SSi/Si descend to an isomorphism

λE/S : E×S W∗
P(S)

∼−→W∗
CM(E)×W∗(S) W∗

P(S)

inducing the identity after base change long the ghost component at (1) and

so the ΛP,S-structure on E/S canonical.

4.1.20 Proposition. — Let f ∈ IdOK
be an ideal which separates units. Then

the unique Λ
P,M

(f)
CM

-structure on the universal CM elliptic curve with level-f

structure E(f) → M
(f)
CM is canonical.

Proof. — This is the content of (4.1.14).

4.2. CM elliptic curves of Shimura type

The purpose of this section is to explain the relationship between Λ-structures

and CM elliptic curves of Shimura type. A CM elliptic curve of Shimura type

is a CM elliptic curve E/Spec(L) where L is an abelian extension of K with

the property that the extension L(E[tors])/K is an abelian extension of K (it

is always an abelian extension of L).

This class of CM elliptic curves was introduced by Shimura (see Theorem

7.44 of [33]). By virtue of their definition, CM elliptic curves of Shimura type

have much simpler arithmetic than arbitrary CM elliptic curves (and of course

elliptic curves in general). In the special case where K has class number one,

every CM elliptic curve E/Spec(K) is of Shimura type, and the first (partial)

verifications of the Birch-Swinnerton-Dyer conjecture made by Coates and

Wiles ([13]) concerned these curves. Along these lines let us also mention the

paper of Rubin ([30]) which considers the Birch-Swinnerton-Dyer conjecture

for general CM elliptic curves of Shimura type.

Let us now give a brief outline of what follows. We first recall a result of

Shimura (4.2.2) stating the existence of infinitely many CM elliptic curves of

Shimura type over the Hilbert class field H of K. We then show that such CM

elliptic curves cannot have good reduction everywhere (4.2.4) and answer the

question raised in (2.4.5) regarding the triviality of the C L OK
-torsor MCM.

We then prove the main result (4.2.8) which is that a CM elliptic curve

E/Spec(L) is of Shimura type if and only if it admits a canonical Λ-structure.

There are some minor technicalities in that one must avoid the ramified primes
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in L/K and the primes of bad reduction for E but we get around this naturally

enough.

The second part of this section concerns itself with the tangent spaces of

Néron models of CM elliptic curves of Shimura type. The Λ-structure on

E/Spec(L) induces a rather rigid structure on Lie algebra of its Néron model.

We then show (4.2.13) that if E/Spec(K(f)) is a CM elliptic curve of Shimura

type over the ray class field of conductor f, and the f-torsion of E is constant,

then the Lie algebra of its Néron model is free away from f, or in other words

that E/Spec(K(f)) admits global minimal model away from f. In particular,

if one takes f = OK so that K(f) = H, this shows that every CM elliptic

curve of Shimura type E/Spec(H) admits a global minimal model everywhere.

This extends a result of Gross ([22]) and will be used crucially in (4.4) in our

construction of a flat affine Λ-presentation of the stack MCM.

4.2.1. Let L be an abelian extension of K and E/Spec(L) a CM elliptic curve.

One says that E/Spec(L) is of Shimura type if the extension L(E[tors])/K is

abelian.

4.2.2 Proposition (Shimura). — There exist infinitely many prime ideals

p of K for which there is a CM elliptic curve E/Spec(H) of Shimura type with

good reduction away from p.

Proof. — By Proposition 7, §5 of [32] there exists infinitely many primes p of

K with Np = p a rational prime, Np = 1 mod w and (Np− 1)/w prime to w,

where w = #O×K. Given such a prime p it follows that the reduction map

O×K → (OK/p)×

is the inclusion of a direct factor. Therefore, we may define a map α : A×OK
→

O×K satisfying α|O×K = idO×K
by

A×OK
→ (OK/p)× → O×K

where the first map is the quotient map and the second is a retraction of

O×K → (OK/p)×. Finally, setting

g : A×OK
/O×K → A×OK

: s mod O×K 7→ sα(s)−1

we define ρ−1 : G(Hsep/H)→ A×OK
by

G(Hsep/H)
−|K∞−→ G(Kab/H)

θ−1
K |G(K∞/H)−→ A×OK

/O×K
g→ A×OK

.

We will now show that ρ satisfies the conditions of (2.5.8) to construct a CM

elliptic curve E/Spec(H) with ρE/H = ρ. For each σ ∈ G(Hsep/H) there is an

s ∈ A×OK
/O×K such that σ|K∞ = θK(s) ∈ G(K∞/H). Unwinding the definition

of ρ−1 we find

[ρ(σ)−1] = [g(s mod O×K)] = [sα(s)−1] = [s]
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so that by (iii) of (2.5.9) we have

[σ]H = [σ|Ksep ]K = [s] = [ρ(σ)−1].

Therefore, the diagram

G(Hsep/H)

[−]H &&

ρ−1

// A×OK

[−]

��

CLOK,∞

commutes and by (2.5.8) there exists a CM elliptic curve E/Spec(H) with

ρE/H = ρ. As ρE/H : G(Hsep/H) → A×OK
factors through G(Kab/H) → A×OK

,

it follows that H(E[tors])/K is abelian over K and E/Spec(H) is of Shimura

type. Moreover, E/Spec(H) has good reduction away from p by (2.5.12) as by

construction the composition

O×Kl
→ A×OK

/O×K
∼−→ G(Kab/H)→ A×OK

is equal to the natural inclusion O×Kl
→ A×OK

for all primes l 6= p.

4.2.3 Remark. — It follows from (4.2.2) above that the map cE /M : MCM →
MCM from MCM to its coarse sheaf admits sections Zariski locally over Spec(OK).

Indeed, by (4.2.2) there are infinitely many primes p of OK and CM el-

liptic curves E/MCM[p−1]. Each map cE/MCM[p−1] : MCM[p−1] → MCM is

then equal to the inclusion M[p−1] → M followed by some automorphism

σa of MCM. By (2.6.8), replacing E with E ⊗OK
a, we may assume that

cE/MCM[p−1] : MCM[p−1]→ MCM is the inclusion.

We note for future reference that if p1 and p2 are two such primes with

E1/MCM[p−1
1 ] and E2/MCM[p−1

2 ] as above, then the fact that cE1/MCM[p−1
1 ] and

cE2/MCM[p−1
2 ] are equal to the natural inclusions implies that E1 and E2 are

locally isomorphic on the over lap MCM[p−1
1 ] ∩MCM[p−1

2 ] = MCM[(p1p2)−1] ⊂
MCM.

4.2.4 Proposition. — There does not exist a CM elliptic curve E/H of

Shimura type with good reduction everywhere.

Proof. — Let E/H be a CM elliptic curve and consider the character (2.5.3)

ρE/H : G(Ksep/H)→ A×OK
.

If H(E[tors])/K is abelian then ρE/H factors as

ρE/H : G(K∞/H) = G(Kab/H)→ A×OK

(note that Kab = K∞). Composing the reciprocal ρ−1
E/H with the isomorphism

θK : A×OK
/O×K

∼−→ G(K∞/H) = G(Kab/H) of (1.4.8.1) we obtain a homomor-

phism

f : AOK
/O×K → A×OK

.
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The fundamental relation [ρ−1
E/H] = [−]H, the fact that [−]H = [−]K|G(Ksep/H),

the fact that θK ◦ [−]K = |K∞ and the fact that the inertia group Ip(K
∞/H) ⊂

G(K∞/K) corresponds to O×Kp
⊂ A×OK

/O×K ⊂ (AOK
⊗OK

K)×/O×K under θK

combined with (2.5.12) shows that for E/H to have good reduction at all

places of H lying above a prime p of OK is equivalent to the composition

O×Kp
⊂ A×OK

/O×K
f→ A×OK

being equal to the inclusion O×Kp
⊂ A×OK

. If this is true for all prime ideals p,

the composition of f with the quotient map

A×OK
→ A×OK

/O×K
f→ A×OK

(4.2.4.1)

is equal to the identity on the sub-group of A×OK
generated by the sub-groups

O×Kp
for all primes p of OK. But this sub-group is dense and so it follows that

the composition (4.2.4.1) is equal to the identity and this is clearly impossible.

4.2.5 Remark. — We can now answer the question raised in (2.4.5) asking

for a trivialisation of the C L OK
-torsor MOK

. In light of the fact that the

coarse sheaf MCM of MCM is isomorphic to Spec(OH) it more natural to ask

the following: does there exists a CM elliptic curve E /Spec(OH) inducing a

trivialisation of the C L OK
-torsor MCM, i.e. an equivalence of stacks

C L OH
× Spec(OH)

∼−→MCM × Spec(OH) : L /S 7→ ES ⊗OK
L ?

While we have shown (4.2.4) that there do not exist CM elliptic curves E/H

of Shimura type with good reduction everywhere, it is possible for there to

exist CM elliptic curves E /Spec(OH) (of course they will not be of Shimura

type). Indeed, Rohrlich [29] has shown that if the discriminant of K over

Q is divisible by at least two primes congruent to 3 mod 4 then there does

exist a CM elliptic curve E /Spec(OH). The answer in general to the question

above is however negative. Indeed, if K has class number, so that K = H,

then every CM elliptic curve E/Spec(K) is of Shimura type and so cannot

have good reduction everywhere, i.e. there does not exist a CM elliptic curve

E /Spec(OK).

4.2.6. We continue with the notation of (4.2.1) so that L/K is an abelian

extension and E/Spec(L) is a CM elliptic curve. We also fix an integral ideal

g ∈ IdOK
such that Spec(OL[g−1]) is unramified over Spec(OK) and such that

E has good reduction over Spec(OL[g−1]). We then set S = Spec(OL[g−1])

and P = Id
(g)
OK

so that S admits a unique ΛP-structure (3.4.6) whose Frobenius

lifts we denote by σa = σa,S : S→ S for a ∈ P. We write E → S for the Néron

model of E relative to Spec(L)→ S so that E → S is a CM elliptic curve. For

p ∈ P a prime ideal let us write Sp = S×Spec(OK) Spec(Fp) and Ep = S×S Sp.



4.2. CM ELLIPTIC CURVES OF SHIMURA TYPE 105

4.2.7 Lemma. — For each p ∈ P, there is at most one homomorphism

ψp
E /S : E → σ∗p(E )

lifting the Np-power relative Frobenius map of Ep.

Proof. — By rigidity the difference of two such homomorphisms is equal to

the zero map on some open and closed sub-scheme of S, the only choices of

which are S and ∅. Therefore, as any two such isomorphisms must agree on

Sp ⊂ S which is non-empty, they agree everywhere.

4.2.8 Theorem. — In the notation of (4.2.6), the following are equivalent:

(i) The CM elliptic curve E → S admits a canonical ΛP,S-structure.

(ii) The CM elliptic curve E → S admits a ΛP,S-structure.

(iii) The extension L(E[tors])/K is abelian, i.e. E/Spec(L) is a CM elliptic

curve of Shimura type.

(iv) The homomorphism ρE/L : G(Lsep/L)→ A×OK
factors through G(Lsep/L)→

G(Kab/L).

Proof. — (i) implies (ii): This is clear.

(ii) implies (iii): For each ideal a the sub-schemes E [a] = ker(ψa
E /S) ⊂ E are

finite and locally free ΛP,S-schemes. After inverting a and forgetting about

the Frobenius lifts for primes dividing a, we may apply (3.4.6) to see that

K(E[a]) = L(E[a]) is abelian over K.

(iii) is equivalent to (iv): This is immediate from the definition of ρE/L

(2.5.3).

(iv) implies (i): If g = OK then L/K is unramified and so L ⊂ H. However,

MCM
∼−→ Spec(OH) and so we must have L = H. However, if L = H and g =

OK then E/Spec(H) admits good reduction everywhere which, as E/Spec(H)

is of Shimura type by hypothesis, is impossible (4.2.4). Therefore, g 6= OK

and it follows that replacing g with gn for some n ≥ 0 we may assume that g

separates units (this changes neither Spec(OL[g−1]) nor P = Id
(g)
OK

).

Write L′ = L(E[g]) and S′ = Spec(OL′ [g
−1]). The extension L′/K is abelian

(by hypothesis L(E[tors]) is abelian) and unramified away from g (as E [g] is

étale over S) so that S′ admits a unique ΛP-structure. By construction, the

CM elliptic curve E ×S S′ admits a level-g structure and, choosing one, we

obtain a map S→ M
(g)
CM and an isomorphism E ×S S′

∼−→ E(g)×
M

(g)
CM

S′. As the

morphism S′ → M
(g)
CM is a ΛP-morphism and E(g) → M

(g)
CM admits a canonical

Λ
P,M

(g)
CM

-structure it follows that

E ×S S′
∼−→ E(g) ×

M
(g)
CM

S′

admits a canonical ΛP,S′-structure and by (iii) of (4.1.19) that E → S admits

a canonical ΛP,S-structure.
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4.2.9 Remark. — Now let E ,E ′ be a pair of CM elliptic curves of Shimura

type over S (we keep g the same). If E and E ′ are locally isomorphic (note

that there is always some ideal a such that E ⊗OK
a and E ′ are locally isomor-

phic) then they are actually ΛP,S-locally isomorphic. Indeed, generically, they

become isomorphic over the extension L′/L corresponding to the character

ρ := ρE/Lρ
−1
E′/L : G(Kab/L)→ O×K.

It is clear that the extension L′/K is abelian and it also is unramified away

from g (the characters ρE/L and ρE′/L agree on the inertia sub-groups for

all p - g — this is the good reduction of E and E ′ away from g). Therefore,

S′ = Spec(OL[g−1]) is finite and étale over S and admits a unique ΛP-structure.

Moreover, there exists an isomorphism

f : E ×S S
∼−→ E ′ ×S S′

and it remains to observe that all such isomorphisms are ΛP,S′-isomorphisms.

Indeed, f is a ΛP,S′-isomorphism if and only if the ΛP,S′-structure on E induced

by transport of structure along f is equal to the given ΛP,S′-structure on E ′

and this follows from (4.2.7).

4.2.10. We now wish to study the Lie algebras of the Néron models of CM

elliptic curves of Shimura type. So we continue with the notation of (4.2.6)

but will also assume that the CM elliptic curve E → S admits a canonical

ΛP,S-structure, i.e. that E/Spec(L) is a CM elliptic curve of Shimura type.

The field L must contain the Hilbert class field H ⊂ L. The following well

known property enjoyed by the Hilbert class field H will be crucial:

4.2.11 Proposition (Hauptidealsatz). — Every rank one OK-module be-

comes free after base change to OH.

4.2.12. We shall abuse notation and write, for each prime ideal p ∈ P,

νp : E ⊗OK
p−1 ∼−→ σ∗p(E )

for the unique isomorphism lifting the isomorphism νp(Ep/Sp) of (2.2.13) or

equivalently the unique isomorphism such that the composition

E
ip→ E ⊗OK

p−1 νp→ σ∗p(E )

is equal to the relative Frobenius lift ψp
E /S.

For a pair of primes p, l the commutativity of the (relative) Frobenius lifts

on E → S amounts to the equalities

σ∗l (νp) ◦ (νl ⊗OK
p−1) = σ∗p(νl) ◦ (νp ⊗OK

l−1) (4.2.12.1)

so that for any ideal a ∈ P, choosing a prime factorisation of a, we may define

isomorphisms

νa : E ⊗OK
a−1 ∼−→ σ∗a(E )
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by composing the various νp for p|a, with the resulting isomorphism being in-

dependent of any choices involved by virtue of (4.2.12.1). These isomorphisms

now satisfy

σ∗a(νb) ◦ (νa ⊗OK
b−1) = σ∗b(νa) ◦ (νb ⊗OK

a−1) (4.2.12.2)

for each a, b ∈ P.

We can actually say more about the νa when σa = idL. In this case, we

get an isomorphism νa : E ⊗OK
a−1 → σ∗a(E ) = E which must be of the form

1⊗ l(a) for some l(a) ∈ OK which generates a. If, moreover, there is an ideal

f such that E[f], and hence E [f], are constant then composition

E [f]→ E [f]⊗OK
a−1 νa[f]→ E [f]

is equal to the unique relative Frobenius lift

l(a) = ψa
E [f]/S = idE [f] : E [f]→ E [f]

so that l(a) = 1 mod f.

By the Néron mapping property the isomorphisms νa extend to isomor-

phisms on the full Néron model

νa : NérOL
(E)⊗OK

a−1 ∼−→ σ∗a(NérOL
(E))

satisfying the same commutativity condition (note that NérOL
(E) is a smooth

group scheme of relative dimension one, not necessarily proper). Denoting by

T = LieNérOL
(E)/Spec(OL)

the Lie algebra of the Néron model, which is a projective rank one OL-module,

the isomorphisms νa induce OL-isomorphisms (which we denote by the same

letter)

νa : T⊗OK
a−1 ∼−→ σ∗a(T)

for each a ∈ P, satisfying the same commutativity condition (4.2.12.2) as the

νa on NérOL
(E).

4.2.13 Corollary. — In the notation of (4.2.12), if L = K(f) is a ray class

field and E[f] is constant then the Lie algebra of the Néron model NérOK(f)
(E)

becomes free after inverting f. In other words, E/Spec(K(f)) admits a global

minimal model away from f.

Proof. — We have the isomorphisms

νa : T⊗OK
a−1 ∼−→ σ∗a(T)

for each ideal a ∈ P = Id
(g)
OK

and when σa = idOK(f)
(this is the case if and only

if a = (a) is principal with a = 1 mod f) the isomorphism

νa : T⊗OK
a−1 ∼−→ σ∗a(T) = T
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takes the form 1 ⊗ l(a) where l(a) ∈ OK is a generator of a such that l(a) =

1 mod f. We now apply (A.4.1) to extend l to a map l : Id
(g)
OK
→ OK(f) satisfying

l(a) ·OK(f) = a ·OK(f) and l(ab) = l(a)σa(l(b)) (4.2.13.1)

for all a, b ∈ Id
(g)
OK

. Define ta : T→ σ∗a(T) be the composition

T
1⊗l(a)−1

−→ T⊗OK
a−1 νa−→ σ∗a(T).

Then ta is an isomorphism by (4.2.13.1), and if a ∈ Prin
(g)
1 mod f then ta = l(a)⊗

l(a)−1 = idT which, combined with the commutativity conditions (4.2.12.2) on

the νa and (4.2.13.1) on the l(a), show that ta depends only on the class σa ∈
G(K(f)/K), that tidK(f)

= idT and that tστ = tσ ◦ σ∗(tτ ) for σ, τ ∈ G(K(f)/K).

In other words, the isomorphisms tσ (or perhaps what is more standard,

their inverses) define Galois descent data on T relative to OK → OK(f). As

OK → OK(f) becomes finite and étale after inverting f, there exists an OK[f−1]-

module T0 such that

T0 ⊗OK[f−1] OK(f)[f
−1]

∼−→ T⊗OK(f)
OK(f)[f

−1].

However, as K(f) contains the Hilbert class field H, all rank one projective

OK[f−1]-modules become free after base change to OK(f)[f
−1] (all rank one pro-

jective OK-modules do by the Hauptidealsatz (4.2.11) and every rank one pro-

jective OK[f−1]-module is a localisation of a rank one projective OK-module).

It follows that

T0⊗OK[f−1]OK(f)[f
−1]

∼−→ T⊗OK(f)
OK(f)[f

−1] = LieNérOL
(E)/Spec(OL)⊗OL

OL[f−1]

is free.

4.2.14 Remark. — We note that when f = OK (4.2.13) the condition on the

f-torsion becomes trivial so that any CM elliptic E/H of Shimura type admits

a global minimal model. This generalises the main result (see Corollary 4.4) of

[22] where it is shown that a CM elliptic curve E/H admits a global minimal

model whenever the conductor of K over Q is prime and the homomorphism

ρE/H satisfies a certain invariance condition. One can show that these as-

sumptions imply E/H is a CM elliptic curve of Shimura type so that (4.2.13)

is indeed a generalisation of [22]. To say a little, the invariance condition on

ρE/H is equivalent to E being isogenous to σ∗(E) for each σ ∈ G(H/K) and the

primality of the discriminant of K over Q implies that the order of G(H/K)

is prime to the order of O×K and together these properties allow one to show

that E/H is a CM elliptic curve of Shimura type (for a result along these lines

see Proposition 2 of [28]).
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4.3. Weber functions

The purpose of this section is to define, for each CM elliptic curve E over

an arbitrary base S, a certain quotient E → XE/S and then to study its re-

sulting properties. Informally, XE/S will be the quotient of E by its group of

automorphisms O×KS
. However, O×KS

does not act freely on E and so the orbits

of are not well behaved. This makes it difficult to construct a quotient (in

the naive sense) with any useful properties. We get around this problem by

using Cartier divisors to define intelligent orbits for the action of O×KS
under

which it behaves as though it were free. Taking the quotient by the result-

ing equivalence relation, we get a smooth, proper curve XE/S together with a

O×KS
-invariant finite locally free map of degree w = #O×K

pE/S : E→ XE/S.

The construction we give is functorial in E/S and so we may run it for

the universal CM elliptic curve E →MCM to obtain a smooth, proper curve

XE /MCM
→ MCM. Almost by definition, this curve descends to a smooth

proper curve f : X→ MCM over the coarse sheaf.

The remainder of the section is devoted to the study of X→ MCM. We first

show that it has the following properties:

(i) f : X → MCM admits a natural ΛMCM
-structure and a ΛMCM

-point 0X :

MCM → X,

(ii) f : X → MCM has genus zero. Thus, if IX ⊂ OX denotes the ideal

sheaf defining the closed point 0X : MCM → X and W = f∗(I
−1
X ) then

W is locally free of rank two over OMCM
, the map f∗(W ) → I −1

X is an

epimorphism and the resulting map

X
∼−→ PMCM

(W )

is an isomorphism,

(iii) setting X[a] = ψa∗
X/MCM

(0X) ⊂ X, the scheme X[a] is a finite locally free

ΛMCM
-scheme of degree Na and K(X[a]) = K(a).

Thus the curve X→ MCM together with its ΛMCM
-structure and its ΛMCM

-

point 0X : MCM → X allow one to construct the ray class fields of K in

an integral and coherent, choice free manner. Of course, this is just a more

streamlined and abstract approach to the classical construction of the ray

class fields of K using Weber functions — this approach being to choose a CM

elliptic curve E/H and to consider the image of E[a] ⊂ E under a ‘Weber map’

E→ P1
H

which is a certain O×K-invariant map of degree w (see Theorem 5.6 of [34]).

The only defect of our approach is that the curve X→ MCM is not partic-

ularly explicit. However, we end the section by showing (by the same method
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we used to show that CM elliptic curves of Shimura type admit global minimal

models) that there exists an isomorphism X
∼−→ P1

MCM
.

4.3.1. We begin by recalling some basic facts regarding Cartier divisors on

curves (see §§1.1-1.2 Chapter I of [24]). Let S be a scheme and let X→ S be

a smooth proper S-curve, i.e. X→ S is smooth of relative dimension one and

proper. An S-relative Cartier divisor on X, or just a Cartier divisor, is a closed

sub-scheme D ⊂ X which is finite locally free over S. Equivalently, a closed

sub-scheme D ⊂ X is a Cartier divisor if and only if D→ S is flat and the ideal

sheaf ID ⊂ OE defining D is a locally free rank one OX-module. Given two

Cartier divisors D,D′ ⊂ X, their sum D + D′ ⊂ X is defined to be the closed

sub-scheme corresponding to the ideal sheaf ID+D′ := ID ⊗OX
ID′ ⊂ OX,

which is again a Cartier divisor.

The degree deg(D) of a Cartier divisor D ⊂ S is defined to be the degree of

the finite locally free S-scheme D. We have deg(D + D′) = deg(D) + deg(D).

The structure map D→ S of a Cartier divisor on X is an isomorphism if and

only if deg(D) = 1 and the set of degree one Cartier divisors on E is equal to

the set of S-points S → X. If s ∈ X(S) is an S-point then we will denote the

corresponding Cartier divisor by s.

If f : X′ → X is a finite locally free map of smooth, proper S-curves

and if D ⊂ X is a Cartier divisor then f∗(D) ⊂ X′ is a Cartier divisor and

deg(f∗(D)) = deg(f) deg(D).

Given a pair of Cartier divisors D,D′ ⊂ X such that deg(D) ≤ deg(D′)

(resp. deg(D) = deg(D′)) we can form the inclusion (resp. equality) S-sheaf

of D and D′:

InX/S(D,D′) ⊂ S (resp. EqX/S(D,D′) ⊂ S)

defined by the property that T → S factors through InX/S(D,D′) → S (resp.

EqX/S(D,D′)→ S) if and only we have an inclusion (resp. equality) of Cartier

divisors

D×S T ⊂ D′ ×S T ⊂ X×S T (resp. D×S T = D′ ×S T ⊂ X×S T).

By Key Lemma 1.3.4 and Corollary 1.3.5 of [24], the sub-sheaves InX/S(D,D′)

and EqX/S(D,D′) of S are finitely presented closed sub-schemes of S. Finally,

if S′ → S is a morphism then we have natural isomorphisms

InXS′/S
′(DS′ ,D

′
S′)

∼−→ InX/S(D,D′)S′ and EqXS′/S
′(DS′ ,D

′
S′)

∼−→ EqX/S(D,D′)S′ .

4.3.2. Now let E/S be a CM elliptic curve. We would like to take the quotient

of E by the action of its group of automorphisms OK
×
S

but, as noted in the

introduction, this action is not free and in particular the map∐
ε∈O×K

(ε, idE) :
∐
ε∈O×K

E = O×KS
×S E→ E×S E
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is not injective so that the orbits of points under this action are not well

behaved. Of course, one could just take the image of this map and obtain an

equivalence relation but then one would have little control over the quotient.

We get around this as follows. If s : S → E is an S-point, we define its

‘orbit’ [O×K](s) ⊂ E to be the Cartier divisor

[O×K](s) =
∑
ε∈O×K

ε∗(s)

(note the sum is of Cartier divisors and has nothing to do with the group law

on E). Then [O×K](s) ⊂ E contains the Cartier divisor s, is stable under the

action of O×KS
and is finite locally free of degree w over S (as the usual orbit

would be if the action of G were free). Equality of these ‘orbits’ defines an

equivalence relation on E, which we denote by

Eq
O×K
E/S ⊂ E×S E,

so that an S-morphism T → E ×S E factors through Eq
O×K
E/S if and only if,

writing (t1, t2) : T → (E ×S E) ×S T = ET ×T ET for the resulting map, we

have an equality of Cartier divisors

[O×K](t1) = [O×K](t2) ⊂ ET = E×S T.

For this equivalence relation to behave as though it really does come from a

group action, it should be the case that, given two points s1, s2 : S→ E then

having s1 ∈ [O×K](s2), i.e. s1 : S→ E factoring through [O×K](s2), should imply

the equality of ‘orbits’

[O×K](s1) = [O×K](s2).

With this in mind, we define the sub-sheaf

In
O×K
E/S ⊂ E×S E

by the property that an S-morphism T → E ×S E factors through In
O×K
E/S ⊂

E ×S E if and only if, writing (t1, t2) : T → (E ×S E) ×S T = ET ×T ET for

the corresponding map, the Cartier divisor t1 : E → ET factors through the

Cartier divisor [O×K](t2) ⊂ ET, i.e. t1 ∈ [O×K](t2). There is a natural inclusion

Eq
O×K
E/S ⊂ In

O×K
E/S ⊂ E×S E

and our claim that the equivalence relation Eq
O×K
E/S behaves as though it were

coming from a free action of a group is that we have an equality

Eq
O×K
E/S = In

O×K
E/S ⊂ E×S E.

Before we prove this, let us make two observations. First, the sub-sheaves

Eq
O×K
E/S ⊂ In

O×K
E/S ⊂ E×S E are in fact closed sub-schemes. View E×S (E×S E)→
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E×S E as a CM elliptic curve over E×S E via projection onto the second two

factors and consider the Cartier divisors

uE/S,1 : E×S E→ E×S (E×S E) : (e1, e2) 7→ (e1, e1, e2)

and

uE/S,2 : E×S E→ E×S (E×S E) : (e1, e2) 7→ (e2, e1, e2).

Then it is an easy exercise to check that we have equalities of sub-sheaves of

E×S E

Eq
O×K
E/S = EqE×S(E×SE)/E×SE([O×K](uE/S,1), [O×K](uE/S,2)) ⊂ E×S E

and

In
O×K
E/S = InE×S(E×SE)/E×SE(uE/S,2, [O

×
K](uE/S,2)) ⊂ E×S E

so that by the representability of equality and inclusion sub-sheaves of Cartier

divisors we find that Eq
O×K
E/S and In

O×K
E/S are closed sub-schemes of E×S E.

Our second observation is that, viewing E ×S E → E as a CM elliptic

curve over E via projection onto the second factor, we have an equality of

sub-schemes

In
O×K
E/S = [O×K](∆E/S) ⊂ E×S E.

Indeed, fixing an affine scheme T over S and a morphism T → E, which

we identify with a morphism t2 : T → E ×S T = ET, the pull-back of the

E-morphism [O×K](∆E/S) ⊂ E×S E along T→ E is given by

[O×K](t2) ⊂ ET = E×S T

(as the pull-back of ∆E/S : E → E ×S E is given by t2 : T → ET = E ×S

T). Therefore, for a second S-morphism T → E, which we identify with a

morphism t1 : T → ET = E ×S T, to have the property that the induced

map T → E×S E factors through [O×K](∆E/S), is equivalent to the morphism

t1 : T→ ET factoring through [O×K](t2) ⊂ ET. All said and done, a morphism

T→ E×SE factors through [O×K](∆E/S) ⊂ E×SE if and only if, in the notation

above, the morphism t1 : T → ET factors through [O×K](t2) ⊂ ET which is to

say that T → E ×S E factors through In
O×K
E/S ⊂ E ×S E. We are now ready to

prove our claim.

4.3.3 Proposition. — Let E/S be a CM elliptic curve. Then we have equal-

ities of closed sub-schemes of E×S E

Eq
O×K
E/S = In

O×K
E/S = [O×K](∆E/S) ⊂ E×S E.

In particular, Eq
O×K
E/S is a finite locally free equivalence relation of degree w.
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Proof. — The only thing we need to show is that the inclusion

Eq
O×K
E/S ⊂ In

O×K
E/S

is an equality. The first thing we note is that it is bijective on geometric points.

That is, if S = Spec(F) is the spectrum of an algebraically closed field F, and

(s1, s2) ∈ E(S)×E(S) satisfy s1 ∈ [O×K](s2) then [O×K](s1) = [O×K](s2). But this

is clear, as E is then a Dedekind scheme and unique factorisation of Cartier

divisors (i.e. of the corresponding ideals) shows that there exists an ε ∈ O×K
(not necessarily unique!) such that s1 = εs2 which gives

[O×K](s1) = [O×K](εs1) = [O×K](s2).

It follows that the inclusion

Eq
O×K
E/S ⊂ In

O×K
E/S,

which is a closed immersion, is a nilpotent thickening.

Now, our claim is local on S and so we may assume that S admits a level-f

structure for some f which separates units. It follows that way assume there

exists a morphism S→ M
(f)
CM and an isomorphism

E
∼−→ E(f) ×

M
(f)
CM

S

and again by the compatibility of inclusion and equality schemes of Cartier

divisors with base change, we may assume that E/S = E(f)/M
(f)
CM, or what is

important, that S is integral.

We will now show that the nilpotent immersion

Eq
O×K
E/S → In

O×K
E/S

is an isomorphism by showing that In
O×K
E/S is reduced. Since S is an integral

scheme, it follows that E is also an integral scheme. Therefore, the finite locally

free E-scheme In
O×K
E/S ⊂ E ×S E is reduced if and only if for some non-empty

open sub-scheme U ⊂ E the pull-back In
O×K
E/S ×E U is reduced.

So let

U =
⋂

16=ε∈O×K

(E− E[1− ε]).

Then over U, the Cartier divisors

ε∗(∆E/S ×E U) : U→ E×S U

for ε ∈ O×K are all disjoint so that

In
O×K
E/S ×E U = [O×K](∆E/S)×E U =

∐
ε∈O×K

ε∗(∆E/S ×E U)
∼−→
∐
O×K

E×S U.
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It follows that In
O×K
E/S ×E U and therefore In

O×K
E/S are reduced and the nilpotent

immersion

Eq
O×K
E/S ⊂ In

O×K
E/S

is an isomorphism.

4.3.4. We are now ready to construct our quotients. So let E/S be a CM

elliptic curve. Then the Cartier divisor of degree w

Eq
O×K
E/S = [O×K](∆E/S) ⊂ E×S E

defines the equivalence relation on E/S where s1, s2 ∈ E(S) are equivalent if

and only if

[O×K](s1) = [O×K](s2).

We write

pE/S : E→ XE/S

for the resulting quotient (in the category of fpqc sheaves). As our equiva-

lence relation is finite locally free (and E is projective over S) it follows from

Corollaire 7.1 Exposé VII of [3] that XE/S is representable by a scheme over

S. We have thus constructed a finite locally free O×KS
-invariant map of degree

w

pE/S : E→ XE/S.

4.3.5 Proposition. — The S-scheme XE/S → S is smooth of relative dimen-

sion one, proper and geometrically connected.

Proof. — As E → S is proper, flat, and geometrically connected and pE/S :

X→ XE/S is finite locally free of degree w (in particular, proper, flat and sur-

jective), it follows that XE/S → S is proper, flat, and geometrically connected.

As XE/S → S is flat, it is smooth if and only if its fibres are smooth, but

when S is the spectrum of a field E is a regular scheme of dimension one and

E → XE/S is finite locally free so that XE/S is also regular of dimension one

and therefore smooth over S.

4.3.6 Remark. — The method used above to construct the quotients XE/S

applies more generally. Indeed, if X→ S is a smooth (not necessarily proper)

curve, S is an integral scheme and G is a finite group acting generically freely

on X by S-automorphisms then there exists a smooth curve X/[G] and a finite

locally free G-invariant map p : X→ X/[G] of degree #G, i.e. what might be

called a ‘quotient’ of X by G. It would be interesting to know whether this

method could be extended to construct ‘quotients’ of curves over more general

bases S, or under more general (non-constant) group actions.
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4.3.7. Let us now consider the functorial properties of the association E/S 7→
XE/S. First, if f : E → E′ is a morphism of CM elliptic curves over S, then

(f ×S f)|
Eq

O×
K

E/S

⊂ Eq
O×K
E′/S ⊂ E ×S E and so there is an induced morphism

Xf : XE/S → XE′/S and a commutative diagram

E

pE/S

��

f
// E′

pE′/S
��

XE/S

Xf
// XE′/S.

The invariance of pE/S and pE′/S under O×KS
shows that f 7→ Xf is also invari-

ant under O×KS
. In symbols, the map

HomOK
S (E,E′)→ HomS(XE/S,XE′/S′) : f 7→ Xf

factors through the quotient sheaf

HomOK
S (E,E′)/O×KS

→ HomS(XE/S,XE′/S′).

In particular, if E and E′ are locally isomorphic then IsomOK
S (E,E′) is an

O×KS
-torsor so that IsomOK

S (E,E′)/O×KS

∼−→ S and we obtain a canonical map

S→ IsomS(XE/S,XE′/S) or what is the same an isomorphism

XE/S
∼−→ XE′/S.

4.3.8. Now let S be an MCM-sheaf, i.e. S → MCM. By the definition of the

coarse sheaf MCM, this implies that there exists a cover (Si → S)i∈I of S and

CM elliptic curves (Ei/Si)i∈I, such that for i, j ∈ I, writing Sij = Si×S Sj , the

CM elliptic curves Ei×Si Sij and Ej ×Sj Sij are locally isomorphic. Therefore,

writing Xi = XEi/Si for i ∈ I we have for all i, j ∈ I canonical isomorphisms

Xi ×Si Sij
∼−→ Xj ×Sj Sij . (4.3.8.1)

The independence of these isomorphisms from the choice of isomorphism

Ei ×Si Sij
∼−→ Ej ×Sj Sij (and similarly on the triple products) show that

the isomorphisms (4.3.8.1) equip the family of curves (Xi/Si)i∈I with descent

data relative to the cover (Si → S)i∈I, which furnishes us with (a priori) a

sheaf XS → S. Similar observations show that the sheaf XS → S is inde-

pendent (upto canonical isomorphism) of the cover (Si → S)i∈I and the CM

elliptic curves (Ei/Si)i∈I and that if S′ → S is a morphism of MCM-sheaves

then we have a canonical isomorphism

XS′
∼−→ XS ×S S′.

In particular, applying this to idMCM
: MCM → MCM we obtain a sheaf X →

MCM and isomorphisms

XS
∼−→ X×MCM

S.
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4.3.9. Before we consider the geometric properties of the sheaf X → MCM,

let us first make the following observations.

(i) There is a unique morphism 0X : MCM → X with the property that if

E/S is a CM elliptic curve and cE/S : S → MCM is the coarse map then

c∗E/S(0X) = 0E : S→ XE/S = c∗E/S(X).

(ii) For each a ∈ IdOK
there is a unique morphism

ψa
X/MCM

: X→ σ∗a(X)

such that for all CM elliptic curves E/S, using the identifications

cE⊗OK
a−1/S = σa ◦ cE/S and then c∗E⊗OK

a−1/S(X) = c∗E/S(σ∗a(X))

the diagram

E
ia

//

��

E⊗OK
a−1

��

c∗E/S(X)
c∗
E/S

(ψa
X/MCM

)
// c∗E/S(σ∗a(X))

(4.3.9.1)

commutes.

(iii) The morphisms ψp
X/MCM

: X → σ∗p(X) for p prime lift the Np-power rel-

ative Frobeniuses and for a, b any two ideals we have the commutativity

condition

ψab
X/MCM

= σ∗a(ψb
X/MCM

) ◦ ψa
X/MCM

which equips XE/S with the structure of a ΨMCM
-sheaf.

(iv) The morphism 0X : MCM → X is a ΨMCM
-morphism.

4.3.10 Proposition. — The sheaf f : X → MCM is a smooth, projective

curve of genus zero. In particular, if IX ⊂ OX denotes the ideal sheaf defining

the closed point 0X : MCM → X then W := fX∗(I
−1
X ) is a locally free rank

two OMCM
-module, the morphism f∗X(W )→ I −1

X is an epimorphism, and the

induced map X→ PMCM
(W ) is an isomorphism.

Proof. — The fact that X→ MCM is a curve is immediate from the fact that

MCM admits an open cover (Mi → MCM)i∈I with CM elliptic curves Ei/Mi.

Indeed, the defining property of X→ MCM then gives

X×MCM
Mi

∼−→ XEi/Mi

and we know that XEi/Mi
is a smooth of relative dimension one, proper and

geometrically connected.

It remains to compute the genus. The genus is constant along the fibres

of a smooth, proper geometrically connected curve, and so to compute it we

may do so after base change along any morphism Spec(Ksep) → M. Fixing

a CM elliptic curve E/Spec(Ksep) and considering the degree w finite locally
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free morphism p = pE/Spec(Ksep) : E→ X×M Spec(Ksep) the Riemann-Hurwitz

formula gives:

2− 2gE = w(2− 2gX)−
∑

x∈E(Ksep)

(ex − 1)

where gE is the genus of E, gX is the genus of X×MCM
Spec(Ksep) and where ex

is the ramification degree of p at x. We have gE = 1, and for each x ∈ E(Ksep)

the ramification degree ex is equal to #Stab(x)−1 where Stab(x) ⊂ O×K is the

stabiliser of x. It is now just a matter computation, depending on whether

O×K = µ2, µ4 or µ6, to verify that the equality

0 = (2− 2gE) = w(2− 2gX)−
∑

x∈E(Ksep)

(ex − 1)

implies gX = 0. We do it for O×K = µ6. The only point with stabiliser µ6 is

0 ∈ E(Ksep), the points with stabiliser µ2 ⊂ µ6 are the three points of E[2]− 0

and the points with stabiliser µ3 ⊂ µ6 are the two points of E[1− ζ3]− 0 (for

ζ3 ∈ µ3 a generator). Therefore, we find

0 = 6 · (2− 2gX)− 1 · (6− 1)− 3 · (2− 1)− 2 · (3− 1) = −12gX

and hence gX = 0.

The other claims now follow using standard arguments from the theory of

curves.

4.3.11 Corollary. — For each a ∈ IdOK
the morphism ψa

X/MCM
: X→ σ∗a(X)

is finite locally free of degree Na and together they equip X with the structure

of a ΛMCM
-scheme and the morphism 0X : MCM → X is a ΛMCM

-morphism.

Proof. — As X is flat over Spec(OK) it follows by (3.3.12) and (iv) of (4.3.9)

that X admits a ΛMCM
-structure and that the morphism 0X : MCM → X is a

ΛMCM
-morphism. The only thing we need to verify is that ψa

X/MCM
is finite

locally free of degree Na but this follows from the diagram (4.3.9.1) defining

ψa
X/MCM

as both columns are finite locally free of degree w and the top map is

finite locally free of degree Na and hence the bottom map must also be finite

locally free of degree Na.

4.3.12. Write X[OK] ⊂ X for the (image of) the morphism 0X : MCM → X,

and for each a ∈ IdOK
define X[a] := ψa∗

X (X[OK]) ⊂ X. Then X[a] ⊂ X is a

finite locally free ΛMCM
-scheme of degree Na.

4.3.13 Proposition. — For each ideal a ∈ IdOK
the extension K(X[a]) of K

generated by the coordinates of X[a] is equal to ray class field K(a).

Proof. — As MCM
∼−→ Spec(OH) it is enough to show that the action of

G(Ksep/H) on X[a](Spec(Ksep)) factors faithfully through the quotient G(Ksep/H)→
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G(K(a)/K). To do this we may choose a CM elliptic curve E/Spec(H) with

character ρE/H : G(Ksep/H)→ A×OK
and consider the map

p = pE/Spec(H) : E→ XE/Spec(H) = X×MCM
Spec(H).

Then p induces a surjective map of G(Ksep/H)-sets

E[a](Spec(Ksep))→ X[a](Spec(Ksep))

and moreover factors through an isomorphism

E[a](Spec(Ksep))→ E[a](Spec(Ksep))/O×K
∼−→ X[a](Spec(Ksep)).

Therefore, an element σ ∈ G(Ksep/H) acts trivially on X[a](Spec(Ksep)) if and

only if ρE/H,a(σ) ∈ (OK/a)× is contained in the image of O×K → (OK/a)×, i.e.

in the notation of (2.5.1) if and only if [ρE/H,a(σ)]a = 1. But

[ρE/H,a(σ)−1]a = [σ]H,a = [σ]K,a

and the kernel of [−]K,a is precisely G(Ksep/K(a)) and so we are done.

4.3.14. We now wish to study the Lie algebra T := LieX/MCM
at the closed

point 0MCM
: MCM → X.

4.3.15 Proposition. — For each a ∈ IdOK
the map

Da : T→ σ∗a(T)

induced by ψa∗
X/MCM

: X→ σ∗a(X) factors as

T
∼−→ σ∗a(T)⊗OK

aw → σ∗a(T)

where the second map is multiplication.

Proof. — It is enough to show that for each a, Zariski locally on MCM, the

image of

Da : T→ σ∗a(T)

is equal to aw ⊗OMCM
σ∗a(T).

So let x ∈ MCM be a point and let S = Spec(OMCM,x) → MCM be the

inclusion of the local ring at x, and let E/S be a CM elliptic curve. The

inverse image of 0 : S→ XE/S = X×MCM
S along the map pE/S : E→ XE/S is

equal to [O×K](0E) and as 0 : S→ E is invariant under O×K we have [O×K](0E) =

Infw−1
0E

(E) is the (w − 1)st infinitesimal neighbourhood of 0E : S → E. It

follows that, writing X̂ = Inf0X(X) that p∗E/S(X̂S) = Inf0E(E) = Ê and that

the map

Ê→ X̂

is finite locally free of degree w and O×K invariant.
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It now follows from Proposition 7.5.2 that, choosing an isomorphism Ê
∼−→

Â1
S there is a unique isomorphism X̂S

∼−→ Â1
S such that the diagram

Ê //

o
��

X̂S

o
��

Â1
S

N
O×

K
(T)

// Â1
S

commutes where the bottom map is

a 7→ NO×K
(a) =

∏
ε∈O×K

[ε](a)

and [ε](T) is the power series on Â1
S
∼−→ Ê representing the automorphism

ε : Ê→ Ê. But as the action of OK is strict we known that [ε](T) = εT + · · ·
and so NO×K

(T) = −Tw + · · · . From this and the fact that the induced map

on Lie algebras of ψp
E/S : E→ σ∗p(E) factors as

LieE/S
∼−→ p⊗OMCM

σ∗p(LieE/S)→ σ∗p(LieE/S)

the claim follows.

4.3.16 Corollary. — The rank one OMCM
-module T is free and there exists

an isomorphism

X
∼−→ P1

MCM
.

Proof. — We have

X
∼−→ PMCM

(W )

where W = f∗(I
−1
X ) where IX ⊂ OX is the ideal sheaf defining the closed

point 0X : MCM → X. Moreover, we have an exact sequence

0→ OMCM
→ W → T→ 0.

As T is projective this exact sequence splits. Then by the same method as in

the proof of (4.2.13) one shows that the isomorphisms

Da : T
∼−→ aw ⊗OMCM

σ∗a(T)

can be turned into descent data from MCM to Spec(OK) and so by the Haup-

tidealsatz T is free. Therefore, W
∼−→ O2

MCM
and

X
∼−→ PMCM

(W )
∼−→ PMCM

(O2
MCM

) = P1
MCM

.

4.3.17 Remark. — We end this section with a remark regarding possible

applications to monogeneity of rings of integers. Define Cartier divisors

Θa ⊂ X[a] ⊂ X
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inductively by setting ΘOK
= X[OK] and, having defined Θa ⊂ X[a], we define

Θap to be

Θap := ψ∗p(σ∗a(Θa))−Θa

if p - a (an analysis of the ΛMCM
-structure on X[a] shows that this is possible)

or to be

Θap := ψp∗
X/MCM

(σ∗p(Θa))

if p|a. Then one can show that Θa ⊂ X is irreducible (but in general non-

reduced), that K(Θa) = K(a) and that

X[a] =
∑
d|a

Θa.

The identity above should be viewed as analogous to the factorisation of the

polynomials Xn − 1 in terms of cyclotomic polynomials.

Moreover, when a is composite Θa and X[OK] = ΘOK
are disjoint so that

one finds a closed immersion

Θa ⊂ X−X[OK] = PMCM
−X[OK](W )

∼−→ VMCM
(T)

∼−→ A1
MCM

.

With a more detailed analysis of the ΛMCM
-structure on XMCM

∼−→ P1
OH

it

may be possible to show that the divisors (Θa)red are regular which would

imply isomorphisms

(Θa)red
∼−→ Spec(OK(a)).

This would then give closed immersion

Spec(OK(a))→ A1
OH

∼−→ A1
MCM

or in other words OK(a) would be monogenic over the ring of integers in the

Hilbert class field OH. It is worth noting that this method would only ap-

ply to conductors a which are composite, and that when a is not composite

counterexamples to the monogeneity of OK(a) over OH are known to exist (see

[14]).

4.4. A Λ-equivariant cover of MCM

In this section we show how one can use the existence of canonical lifts of

CM elliptic curves to define a flat, affine and formally smooth cover of MCM

admitting a Λ-structure compatible with that on MCM. Indeed, we rigidify

MCM by equipping a CM elliptic curve E/S with a trivialisation of the Lie

algebra of its canonical lift. The results of (4.2) allow us to show that this

does indeed define a cover of MCM with the desired properties.
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4.4.1. Let S be an ind-affine scheme. The category C L OK
(S) acts on the

category M ∗
CM(S). However, we have shown that MCM(S) is equivalent to the

category W∗(MCM)Λ(S) so that C L OK
should also act on W∗(MCM)Λ and

now explain how.

As W∗ commutes with étale fibre products and OKS
is étale over S, the

sheaf W∗(OKS
) is naturally a ΛW∗(S)-sheaf of rings over W∗(S). Moreover,

W∗ also commutes with disjoint unions which gives an identification

W∗(OKS
)
∼−→ OKW∗(S)

compatible with the ring structures. In much the same way, if L is a rank one

OK-local system over S, then W∗(L ) is a rank one OK-local system over W∗(S)

equipped with a ΛW∗(S)-structure which is compatible with its OKW∗(S)
=

W∗(OKS
)-module structure, i.e. the map

OKW∗(S)
×W∗(S) W∗(mcL)→W∗(L )

defining the action of OKW∗(S)
on W∗(L ) is a ΛW∗(S)-morphism.

Now if E/S is a CM elliptic curve then, as both W∗
CM(E) and W∗(L ) have

ΛW∗(S)-structures compatible with their OKS
-module structures, and as the

forgetful functor ShΛW∗(S)
→ ShW∗(S) commutes with all limits and colimits

(3.3.8), the CM elliptic curve

W∗
CM(E)⊗OK

W∗(L )

is also equipped with a ΛW∗(S)-structure compatible with its OKW∗(S)
-module

structure.

4.4.2 Proposition. — The ΛW∗(S) structure on W∗
CM(E)⊗OK

W∗(L ) is canon-

ical and there is a unique ΛW∗(S)-isomorphism

W∗
CM(E⊗OK

L )
∼−→W∗

CM(E)⊗OK
W∗(L )

inducing the identity on the ghost components at (1).

Proof. — The ΨΓ∗(S)-structure on W∗(L )×W∗(S)Γ∗(S) is compatible with the

isomorphisms

W∗(L )×W∗(S) Γ∗(S)
∼−→ Γ∗(L )

∼−→ L ×S Γ∗(S)

where the last fibre product is over the sum of the identity maps

Γ∗(S) =
∐

a∈IdOK

S→ S

and where the ΨΓ∗(S)-structure on L ×S Γ∗(S) is induced by the Ψ-structure

on Γ∗(S). Therefore, we obtain ΨΓ∗(S)-isomorphisms

(W∗
CM(E)⊗OK

W∗(L ))×W∗(S)Γ
∗(S)

∼−→ Γ∗CM(E)⊗OK
Γ∗(L )

∼−→ Γ∗CM(E⊗OK
L )

which induce the identity after pull-back to the ghost component at (1). This

is precisely the definition of a canonical ΛW∗(S)-structure and this proves the
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first statement. As the ghost components at (1) of W∗
CM(E)⊗OK

W∗(L ) and

W∗
CM(E⊗OK

L ) are equal to E⊗OK
L we get a unique ΛW∗(S)-isomorphism

W∗
CM(E)⊗OK

W∗(L )
∼−→W∗

CM(E⊗OK
L )

inducing the identity after pull-back along the ghost component at (1).

4.4.3 Remark. — Consider the sheaf

W∗(A
1) = W∗(Spec(OK[T])) = Spec(Λ�OK[T]) = Spec(Λ)

of arithmetic jets of A1 over Spec(OK). It is a ring scheme over Spec(OK) and

its sections over an affine scheme S = Spec(A) are given by

W∗(A
1)(Spec(A)) = W(A).

The structure map

OK →W(A) = W∗(A
1)(S)

for varying affine schemes S = Spec(A) is injective (3.2.16) and induces a

monomorphism of sheaves of rings

iW : OK →W∗(A
1). (4.4.3.1)

This fact will be crucial for what follows.

4.4.4. Let L /S be a rank one OK-local system. A level-W structure on L

is an isomorphism of OW∗(S)-modules

λ : W∗(L )⊗OKW∗(S)
OW∗(S)

∼−→ OW∗(S).

A W-isomorphism (L /S, λ)
∼−→ (L ′/S, λ′) of rank one OK-local systems with

level-W structure is an OKS
-isomorphism h : L

∼−→ L ′ such that

λ = λ′ ◦W∗(h).

The tensor product of two rank one OK-local systems with level-W structure

(L , λ) and (L ′, λ′) is defined to be

(L ⊗OK
L ′, λ⊗OW∗(S)

λ′)

where we view λ ⊗OW∗(S)
λ′ as a level-W structure on L ⊗OK

L ′ using the

identification

W∗(L ⊗OK
L ′)

∼−→W∗(L )⊗OK
W∗(L ′).

We write C L W
OK

for the fibred category over IndAffOK
with fibre over S

given by the category rank one OK-local systems over S equipped with a level-

W structure (L /S, λ) together with their W-isomorphisms.

4.4.5 Proposition. — C L W
OK

is a stack over IndAffOK
for the étale topology

and is equivalent to its coarse sheaf for the étale topology.



4.4. A Λ-EQUIVARIANT COVER OF MCM 123

Proof. — That C L W
OK

is a stack for the affine étale topology on IndAffOK

is easy to see using the fact that if L /S is a rank one OK-local system and

S′ → S is any morphism then

W∗(L )×W∗(S) W∗(S′)
∼−→W∗(L ×S S′)

and that for any étale morphism T→ S we have

W∗(S′ ×S T)
∼−→W∗(S′)×W∗(S) W∗(T).

For the second statement it is enough to show that if (L , λ) is a rank one

OK-local system with level-W structure then every W-automorphism of L

is trivial. But if ε ∈ O×KS
(S) defines a W-automorphism of L , we have an

equality

idW∗(L ) ⊗OKW∗(S)
iW(ε) = W∗(ε)⊗OKW∗(S)

idOW∗(S)
(4.4.5.1)

of automorphisms of W∗(L )⊗OKW∗(S)
OW∗(S). As iW is a monomorphism and

the ρ is invariant under the automorphism (4.4.5.1) we must have ε = 1.

4.4.6. We write CLW
OK

for the coarse sheaf of C L W
OK

with which we identify

it by (4.4.5). The tensor product of rank one OK-local systems with level-W

structure equips CLW
OK

with the structure of a sheaf of groups over Spec(OK).

We now describe a short exact sequence relating CLW
OK

to the Spec(OK)-

group scheme of arithmetic jets W∗(Gm) of Gm.

Let S = Spec(A) be an affine Spec(OK)-scheme. The sections of W∗(Gm)

over S are given by

W∗(Gm)(Spec(A)) = W(A)×

and the monomorphism (4.4.3.1) restricts to a monomorphism again denoted

iW : O×K →W∗(Gm).

For each

a ∈ Gm(W∗(S)) = AutW∗(S)(OW∗(S))

we define an element [a]W ∈ CLW
OK

(S) by [a]W := (OKS
, a) where we view a as

the level-W structure on OKS
:

OKW∗(S)
⊗OKW∗(S)

OW∗(S) = OW∗(S)
a→ OW∗(S).

This defines a homomorphism

[−]W : W∗(Gm)→ CLW
OK

Finally, composing the forgetful map

CLW
OK
→ C L OK

: (L /S, λ) 7→ L /S

with the map C L OK
→ CLOK

of (1.5.4) we obtain a homomorphism

fW : CLW
OK
→ CLOK

.
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4.4.7 Proposition. — The sequence of sheaves

0→ O×K
iW−→W∗(Gm)

[−]W−→ CLW
OK

fW−→ CLOK
→ 0

is exact for the étale topology and CLW
OK

is representable by a flat, affine for-

mally smooth group scheme over Spec(OK).

Proof. — We first show that fW : CLW
OK
→ CLOK

is an epimorphism for the

étale topology. This is equivalent to showing that for each ideal a (or at least

one in each ideal class of CLOK
) there is an étale cover S → Spec(OK) with

the property that the OK-local system aS admits a level-W structure.

Let S = Spec(OH)→ Spec(OK). Then we have an isomorphism of OW∗(S)-

modules

aW∗(S) ⊗OK
OW∗(S)

∼−→ a · OW∗(S)

where a·OW∗(S) is the ideal sheaf defining the closed immersion W∗(S)×Spec(OK)

Spec(OK/a)→W∗(S). However, this map is obtained by pulling-back the map

S×Spec(OK) Spec(OK/a)→ S along the morphism µS : W∗(S)→ S defining the

Λ-structure on S = Spec(OH). Therefore, it is enough to show that the ideal

sheaf defining the closed immersion S ×Spec(OK) Spec(OK/a) → S is free, but

this sheaf is a⊗OK
OH which is free by the Hauptidealsatz (4.2.11).

We now show that the map [−]W : W∗(Gm) → CLW
OK

defines an epimor-

phism onto the kernel of fW. It is clear that [−]W maps to ker(fW) as the

rank one OK-local system underling [−]W is the trivial one. Now let S be an

affine scheme and let (L /S, λ) ∈ ker(fW). We will show that there exists a

cover (Si → S)i∈I and elements ai ∈W∗(Gm)(Si) with [ai] = (LSi , λSi).

Since (L , λ) ∈ ker(fW) it follows that L is étale locally isomorphic OKS
.

Therefore, we may assume that (L , λ) = (OKS
, λ) but then the isomorphism

λ : OKS
⊗OKS

OW∗(S) = OW∗(S)
∼−→ OW∗(S)

is given by some a ∈W∗(Gm)(S) = AutW∗(S)(OW∗(S)) and we have

(OKS
, λ) = (OKS

, a) = [a]W.

Finally, we compute the kernel of [−]W. So let a ∈ W∗(Gm)(S) and as-

sume that [a]W = (OKS
, a) = (OKS

, idOW∗(S)
). By definition, this implies the

existence of an isomorphism

ε ∈ IsomOK
S (OKS

,OKS
) = O×KS

(S)

such that W∗(ε) = a. But W∗(ε) viewed as an element of

AutOW∗(S)
(OW∗(S)) = W∗(Gm)(S),

is precisely iW(ε). Therefore a = iW(ε) and ker([−]W) = OK
× ⊂W∗(Gm).

It follows from the above that the kernel of fW is equal to the sheaf of

groups

W∗(Gm)/O×K.
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However, O×K is finite étale and W∗(Gm) is flat and affine and so it follows

that the quotient sheaf

W∗(Gm)/O×K

is also flat and affine. As CLOK
is affine, fW is an epimorphism and

CLW
OK
×CLOK

CLW
OK

∼−→ CLW
OK
×W∗(Gm)/O×K

is affine and flat it follows that CLW
OK

is affine and flat over Spec(OK). Simi-

larly, as W∗(Gm) is formally smooth (being an inverse limit of smooth affine

schemes) and W∗(Gm)→W∗(Gm)/OK
× is étale it follows that W∗(Gm)/OK

×

is formally smooth and by descent that CLW
OK

is formally smooth.

4.4.8. Let S be an affine scheme and let E/S be a CM elliptic curve. A

level-W structure on E/S is an isomorphism of OW∗(S)-modules

ρ : LieW∗CM(E)/W∗(S)
∼−→ OW∗(S).

A W-isomorphism (E/S, ρ)
∼−→ (E′/S, ρ′) of CM elliptic curves with level-W

structures is an isomorphism f : E
∼−→ E′ of CM elliptic curves such that

ρ = ρ′ ◦ LieW∗CM(E′)/W∗(S)(W
∗
CM(f)).

We denote by M W
CM the fibred category over IndAffOK

whose fibre over an

ind-affine scheme S is given by the category of CM elliptic curves with level-W

structures together with their W-isomorphisms.

Just as with CLW
OK

, the objects of M W
CM admit no non-trivial automorphisms

and so the stack M W
CM is equivalent to its coarse sheaf which we denote by

MW
CM.

There is an action of CLW
OK

on MW
CM given by

MW
CM × CLW

OK
→ MW

CM : ((L /S, λ), (E/S, ρ)) 7→ (E⊗OK
L , ρ⊗OW∗(S)

λ)

where we use the identification (4.4.2)

W∗
CM(E⊗OK

L )
∼−→W∗

CM(E)⊗OK
W∗(L ).

4.4.9 Theorem. — We have the following:

(i) The forgetful map

MW
CM →MCM

is affine, faithfully flat and formally smooth.

(ii) MW
CM is an CLW

OK
-torsor over Spec(OK) and is therefore flat, affine and

formally smooth over Spec(OK).

(iii) The map

MW
CM×Spec(OK)W∗(Gm)→ MW

CM×MCM
MW

CM : ((E/S, ρ), a) 7→ ((E/S, ρ), (E/S, aρ))

is an isomorphism.
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Proof. — (i) Let E/S be CM elliptic curve and write

T = LieW∗CM(E)/W∗(S).

Then the fibre of the map M W
CM →MCM along S

E→MCM is given by

tE/S : W∗(IsomOW∗(S)
(T,OW∗(S)))×W∗(W∗(S)) S→ S

and so to the prove the claim we need only show that tE/S is affine, faithfully

flat and formally smooth.

We now show that tE/S is affine, faithfully flat and formally smooth when-

ever E/S admits a level-W structure. Indeed, if (E/S, ρ) is a level-W structure

on E/S then we obtain an isomorphism

Gm ×W∗(S)
∼−→ IsomOW∗(S)

(T,OW∗(S)) : a 7→ a · ρ

and so an isomorphism

W∗(Gm ×W∗(S))×W∗(W∗(S)) S
∼−→W∗(IsomOW∗(S)

(T,OW∗(S)))×W∗(W∗(S)) S.

But

W∗(Gm ×W∗(S))×W∗(W∗(S)) S = W∗(Gm)× S→ S

is faithfully flat, affine and formally smooth as

W∗(Gm) = lim
a∈IdOK

Wa∗(Gm)

is an inverse limit of faithfully flat, affine and smooth Spec(OK)-schemes.

As the morphism tE/S is compatible with base change in order to finish the

proof of our claim, we may localise S and in particular assume that E admits

a level-f structure for some f which separates units. We may now assume that

S = M
(f)
CM and that E = E(f) and, by the previous arguments, to show that

t
E(f)/M

(f)
CM

is faithfully flat, affine and formally smooth it is enough to show

that E(f)/M
(f)
CM admits a level-W structure. To ease notation, let us write

M = M
(f)
CM, E = E(f), P = Id

(f)
OK

and P′ ⊂ IdOK
for the sub-monoid generated

by the prime divisors of f (so that P ∩ P′ = {OK} and P · P′ = IdOK
).

Then W∗(M) = W∗
P(W∗

P′(M)) and as f is invertible on M we have Γ∗P′(M) =

W∗
P′(M) so that

W∗(M) =
∐
a∈P′

W∗
P(M).

Using this and the fact that the ΛP,M-structure on E is canonical (4.1.20) we

find

W∗
CM(E)

∼−→
∐
a∈P′

µ∗M(E)⊗OK
a−1 =

∐
a

µ∗M(E⊗OK
a−1)

where

µM : W∗
P(M)→ M

defines the (unique) ΛP-structure on M.
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Now to show that E/M admits level-W structure it is enough to show that

LieE⊗OK
a−1/M = LieE/M ⊗OK

a−1 = LieE/M

(the last equality is because a ∈ P′ is invertible on M) is free for each a ∈ P′

but this is (4.2.13).

(ii) Let (E/S, ρ) and (E′/S, ρ′) be a pair of CM elliptic curves with level-W

structures. Then E′
∼−→ E⊗OK

L for some L ∈ C L OK
(S) and therefore

W∗
CM(E)⊗OK

W∗(L )
∼−→W∗

CM(E⊗OK
L ) = W∗

CM(E′).

We then have

LieW∗CM(E′)/W∗(S) = LieW∗CM(E⊗OK
L )/W∗(S)

= LieW∗CM(E)⊗OK
W∗(L )/W∗(S)

= LieW∗CM(E)/W∗(S) ⊗OK
W∗(L )

so that the isomorphism

ρ′ : LieW∗CM(E′)/W∗(S) = LieW∗CM(E)/W∗(S) ⊗OK
W∗(L )

∼−→ OW∗(S)

must be of the form ρ⊗OW∗(S)
λ where λ : W∗(L )⊗OK

OW∗(S) → OW∗(S) is a

level-W structure on L . Therefore

(E′/S, ρ′) = (L /S, λ) · (E/S, ρ) = (E⊗OK
L , ρ⊗OW∗(S)

λ)

and the action of CLW
OK

on MW
CM is transitive.

Let us now see that it is free which is equivalent to the claim that if (E/S, ρ)

and (L /S, λ) are a CM elliptic curve and rank one OK-local system with level-

W structure then there exists an W-isomorphism

f : (E/S, ρ)
∼−→ (E⊗OK

L , ρ⊗ λ)

only if there exists a W-isomorphism (OKS
, 1)

∼−→ (L , λ).

So let f be such an isomorphism. Then f : E
∼−→ E ⊗OK

L is of the

form idE ⊗OK
h for a unique isomorphism h : OKS

∼−→ L (2.4.4) and as f is

compatible with the level-W structures ρ and λ⊗ρ, the isomorphism h defines

a W-isomorphism

(OKS
, idOW∗(S)

)
∼−→ (L , λ)

and our claim follows.

Therefore, the action of CLW
OK

on MW
CM is free and transitive so that to show

MW
CM is a torsor it is enough to show that the structure map MW

CM → Spec(OK)

is an epimorphism, but this follows from the work done in (ii) showing that

any CM elliptic curve E/S étale locally admits a level-W structure.

(iii) It is clear that any pair of level-W structures on a CM elliptic curve

E/S differ by scaling by an element of W∗(Gm)(S) which is the claim.
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4.4.10. We now equip MW
CM with a Λ-structure. As MW

CM is flat and affine to

give MW
CM a Λ-structure it is enough to define a commuting family of Frobenius

lifts ψp

MW
CM

for each prime ideal p. We now set ψp

MW
CM

to be the map defined on

S-sections

(E/S, ρ) 7→ (E⊗OK
p−1/S, ψp∗(ρ))

where ψp∗(ρ) can be viewed as a level-W structure on E ⊗OK
p−1 via the

identifications

ψp∗(W∗
CM(E))

∼−→W∗
CM(E)⊗OK

p−1 ∼−→W∗
CM(E⊗OK

p−1).

It is clear that these maps commute and that they lift the Np-power Frobenius

endomorphisms modulo p. Finally, this equips the stack MCM with a flat affine

presentation

CLW
OK
×MW

CM
//
// MW

CM
// MCM

and where the two parallel arrows are morphisms of Λ-schemes, again express-

ing the ‘fact’ that MCM is a Λ-stack.

4.5. Perfect Λ-schemes and Tate modules

In this final section we exhibit a rather interesting relationship the Tate

module of a canonical CM elliptic curve over an Λ-ind-affine-scheme and a

certain deformation of it to the perfection of S, which is the universal Λ-ind-

affine-scheme under S on which the Frobenius lifts are isomorphisms. We

then show that the canonical lift E/S can be deformed to a canonical CM

elliptic curve Eper/S
per. We end the section by making some remarks about

the relationship of this exact sequence with periods, both p-adic and analytic.

4.5.1. We first define the Tate module of an arbitrary CM elliptic curve. So

let S be an ind-affine scheme E/S a CM elliptic curve. The Tate module of

E/S is defined to be the pro-finite locally free S-group scheme

T(E) := lim
a

E[a]⊗OK
a

where the transition maps are induced multiplication

E[ab]⊗OK
ab→ E[a]⊗OK

a.

We also define the universal cover of E/S to be the sheaf

Ẽ := lim
a

E⊗OK
a

where again the transition maps are induced by multiplication. The inclusion

T(E)→ Ẽ identifies T(E) with the kernel of the projection Ẽ→ E so that we

have an exact sequence of sheaves (for the fpqc topology)

0→ T(E)→ Ẽ→ E→ 0. (4.5.1.1)
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4.5.2. Now let S be a Λ-ind-affine scheme. The perfection Sper of S is the

Λ-sheaf defined by

Sper = colim
a∈IdOK

,ψa
S

where the transition maps are the Frobenius lifts. The action of the monoid of

ideals IdOK
on Sper is now by automorphisms so that it extends to an action

of the group of fractional ideals IdK. For a ∈ IdK (now a fractional ideal)

we write ψa
Sper

: Sper → Sper for the corresponding automorphism. It follows

immediately from the definition that Sper is universal among Λ-sheaves lying

under S on which the Frobenius lifts are isomorphisms. When S = W∗(T) is

the Witt vectors of an ind-affine scheme we write

Ŵ∗(T) = W∗(T)per.

Viewing S as a ΛSper-ind-affine scheme via the element of the colimit (4.5.2)

corresponding to OK ∈ IdOK
we see that the structure map of the element of

the colimit (4.5.2) corresponding a is

S→ Sper ψ
a−1

Sper→ Sper

and the colimit (4.5.2) can be rewritten as the colimit of Sper-sheaves

Sper = colim
a∈IdOK

,ψa

ψa−1

Sper!(S). (4.5.2.1)

4.5.3. If E/S is a CM elliptic curve equipped with a canonical Λ-structure

then we have a natural identification E⊗OK
a−1 ∼−→ ψa∗

S (E). Hence for a, b ∈
IdOK

we have isomorphisms

E⊗ b
∼−→ ψa∗

S (E⊗ ab)

and this gives for all a and b a Cartesian diagram

E⊗OK
b //

��

E⊗OK
ab

��

ψb−1

Sper!(S)
ψa

// ψ
(ab)−1

Sper! (S).

(4.5.3.1)

We then define a Λ-sheaf over Sper by

Eper = colim
a∈IdOK

E⊗OK
a→ Sper = colim

a∈IdOK

ψa−1

Sper!(S) = Sper.

4.5.4 Proposition. — Eper is a CM elliptic curve over Sper equipped with a

canonical ΛSper-structure.

Proof. — First, Eper admits a ΛSper-structure as it is a colimit of ΛSper-sheaves.

Secondly, as the colimit is filtered and the diagrams (4.5.3.1) are all cartesian

it follows that for all a ∈ IdOK
we have ΛSper-isomorphisms

Eper ×Sper ψa−1

Sper!(S)
∼−→ E⊗OK

a.



130 CHAPTER 4. CM ELLIPTIC CURVES AND Λ-STRUCTURES

This shows that Eper is a CM elliptic curve. It now also follows from (iii) of

(4.1.19) that its ΛSper-structure is canonical, as the ΛS-structures of E ⊗OK
a

are canonical and (ψa−1

Sper!(S)→ Sper)a∈IdOK
is a cover.

4.5.5. We now relate Eper/S
per to Ẽ/S. This is nothing more than an appli-

cation of certain adjunctions and the definitions. Indeed, for each ind-affine

scheme T → S, the morphism T → Sper induces a morphism Ŵ∗(T) → Sper

and viewing Ŵ∗(T) as a ΛSper-ind-affine scheme we have

HomΛ
Sper(Ŵ∗(T),Eper) = lim

a
HomΛ

Sper(ψa−1

Sper!(W
∗(T)),Eper)

= lim
a

HomΛ
Sper(W∗(T), ψa−1∗

Sper (Eper))

= lim
a

HomΛ
Sper(W∗(T),Eper ⊗OK

a))

= lim
a

HomΛ
S (W∗(T),E⊗OK

a)

= lim
a

HomS(T,E⊗OK
a)

= HomS(T, Ẽ).

Therefore, we have a natural isomorphism of functors on ind-affine S-schemes

HomΛ
Sper(Ŵ∗(−),Eper)

∼−→ HomS(−, Ẽ).

If we denote the left hand side by

Ŵ∗(Eper)Λ : T/S 7→ HomΛ
Sper(Ŵ∗(T),Eper)

then we may then rewrite the exact sequence of (4.5.1.1) to obtain the follow-

ing:

4.5.6 Theorem. — The is an exact sequence of fpqc sheaves

0→ T(E)→ Ŵ∗(Eper)Λ → E→ 0.

4.5.7. If now S is an ind-affine scheme (not a Λ-scheme) and E/S is any CM

elliptic curve then we may perform the above construction for W∗
CM(E)/W∗(S)

to obtain a CM elliptic curve

Ŵ∗
CM(E) := W∗

CM(E)per → Ŵ∗(S) = W∗(S)per

and an exact sequence of sheaves for the fpqc topology over W∗(S):

0→ T(W∗
CM(E))→ Ŵ∗(Ŵ

∗
CM(E))Λ → Ŵ∗

CM(E)→ 0. (4.5.7.1)

If we pull-back this exact sequence along the first ghost component g(1) :

S→W∗(S), and just write

Ŵ∗(Ŵ
∗
CM(E))Λ|S = g∗(1)(Ŵ∗(Ŵ

∗
CM(E))Λ)

then (4.5.7.1) becomes the exact sequence over S:

0→ T(E)→ Ŵ∗(Ŵ
∗
CM(E))Λ|S → E→ 0
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(where we use the fact that g∗(1)(W
∗
CM(E))) = E).

4.5.8 Corollary. — For any ind-affine scheme S and any CM elliptic curve

E/S there exists an exact sequence of fpqc sheaves over S

0→ T(E)→ Ŵ∗(Ŵ
∗
CM(E))Λ|S → E→ 0.

4.5.9 Remark. — Although we have not discussed it, there is a completely

analogous theory of canonical lifts for Lubin–Tate O-modules for which the

above constructions can also be made. For O = Zp and F = µp∞ , the analogue

of the exact sequence (4.5.8) evaluated on Spf(Zp) gives

0→ T(µp∞)(Zp)→ µp∞(Ainf)
ϕp=p → µp∞(Zp)→ 0

where Ainf with its Frobenius lift ϕp is Fontaine’s ring, and we have used the

(non-obvious) fact that

Spf(Ainf)
∼−→ Ŵ∗(Spf(Zp)).

The image in µp∞(Ainf) of a generator ε ∈ T(µp∞)(Zp) is Fontaine’s element

[ε], the logarithm of which is the p-adic period t.

4.5.10 Remark. — While there is (as yet) no theory of analytic Λ-structures

one can fudge a theory of analytic canonical lifts. Here let us sketch the

construction of an analytic analogue of the short exact sequence (4.5.8) relating

the period lattice of Ean/San to a certain analytic canonical lift of E/S.

So let S → Spec(C) be a complex scheme of finite type. We note that as

K ⊂ C, we have

W∗(S) = Γ∗(S) =
∐

a∈IdOK

S = IdOK
× S

and

Ŵ∗(S) = IdK × S.

There is a natural analytic analogue of IdK which we call IdC and is given

by (IdK×C×)/K× where a ∈ K× acts on IdK×C by (a, s) 7→ ((a)a, as). Note

there is a short exact sequence

0→ O×K → C× → IdC → CLOK
→ 0.

It is natural, in light of the above, to define the analytic Witt vectors of the

analytification San of S to be the analytic space

Wan∗(S) := IdC × San

together with its action of IdC.

We can now analytically mimic our construction of W∗
CM over Wan∗(S). So

define the rank one OK-local system Lan to have fibre over (a, s) × San ⊂
San × IdC = Wan∗(S) the constant OK-local system associated to the rank

one OK-module s · a−1 ⊂ s · K ⊂ C (note this depends only on the class of
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(a, s) ∈ (IdK ×C×)/K× = IdC). If E/S is a CM elliptic curve then we define

Wan∗
CM(E) to be

p∗S(Ean)⊗OK
Lan

where pS : Wan∗(S) = IdC × San → San is the projection (cf. (4.1.2)).

The CM elliptic curve Wan∗
CM(E) → Wan∗(S) inherits a natural action of

IdOK
(not IdC!) which is compatible with that on Wan∗(S). Finally, setting

Wan∗(X) = IdC × X with its IdC action for any analytic space, we define a

sheaf on the big analytic site of S by

Wan
∗ (Wan∗

CM(E))Λ|S : X/S 7→ Hom
IdOK

Wan∗(S)(W
an∗(X),Wan∗

CM(E)).

Let us spell out here that the right hand side here denotes the IdOK
-equivariant

analytic Wan∗(S)-maps

Wan∗(X)→Wan∗
CM(E).

With this definition one can show (almost as formally as in the algebraic

situation) that there exists an isomorphism of sheaves on the big analytic site

of San

Wan
∗ (Wan∗

CM(E))Λ|S
∼−→ LieEan/San

and so the exponential sequence

0→ TOK
(Ean)→ LieEan/San → Ean → 0

of Ean/San can be rewritten as

0→ TOK
(Ean)→Wan

∗ (Wan∗
CM(E))Λ|S → Ean → 0.



APPENDIX A

ODD AND ENDS

A.1. Formal groups

The purpose of this section is to give an intrinsic definition of a (smooth)

formal group. We do this using Messing’s definition of infinitesimal neigh-

bourhoods given in [27], and the general theory of tangent spaces given in

[2].

A.1.1. First let us recall the construction of infinitesimal neighbourhoods

from Chapter II of [27] and some its properties. So fix a monomorphism of

sheaves Z → X. The kth infinitesimal neighbourhood of Z in X, denoted

Inf
(k)
Z (X), is the sub-sheaf of X defined by the property that an affine scheme

T mapping to X factors through Inf
(k)
Z (X) → X if and only if there exists an

fpqc cover (Ti → T)i∈I and closed sub-schemes (Ti → Ti)i∈I defined by ideals

whose (k + 1)st power is (0), such that the composition Ti → T→ X factors

through Z→ X. Diagrammatically, we have

Z �
�

// Inf
(k)
Z (X) �

�
// X

Ti

OO

� � // Ti
//

OO

T.

OO
cc

If Z → X is a closed immersion of schemes defined by a quasi-coherent ideal

I ⊂ OX then Inf
(k)
Z (X) → X is the closed sub-scheme defined by the ideal

I (k+1) ⊂ OX.

These constructions satisfy the following:

(a) For k ≤ k′ there is an inclusion Inf
(k)
Z (X) ⊂ Infk+1

Z (X). We write

InfZ(X) = colimk Inf
(k)
Z (X) and call this completion of X along Z.

(b) If X′ → X is any morphism then we have

Inf
(k)
Z (X)×X X′ = Inf

(k)
Z×XX′(X

′).

(c) If Z → X is an monomorphism of S-sheaves for some sheaf S and Y

is another S-sheaf equipped with an S-monomorphism Z → Y then, as
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sub-sheaves of X×S Y, there are inclusions:

Inf
(k)
Z (Y ×S X) ⊂ Inf

(k)
Z (X)×S Inf

(k)
Z (Y) ⊂ Inf

(2k)
Z (X×S Y)

and taking colimits we have

InfZ(X×S Y) = InfZ(Y)×S InfZ(X).

A.1.2. Write Sh•S for the category of S-pointed S-sheaves. If X is a pointed S-

sheaf we write X̂ = colimk Inf
(k)
S (X) for the formal neighbourhood of the point

S→ X. The functor X 7→ X̂ preserves finite products of pointed S-sheaves so

that if G is an S-group, viewed as a pointed S-sheaf via the identity S → G,

then Ĝ is again a sheaf of groups over S which we call the formal group of G.

A.1.3. Here we recall part of the rather general construction of Lie algebras

given in Exposé II of [2]. Let S be a sheaf and V a vector bundle. Make

OS⊕V a sheaf of quasi-coherent OS-algebras by declaring that V be a square

zero ideal, and write DS(V ) for the S-sheaf whose sections over an ind-affine

scheme T→ S are given

DS(V )(T) = HomOT
(OT ⊕ VT,OT).

This defines a contravariant functor QCoh(OS) → Sh•S. If V1 and V2 are two

quasi-coherent OS-modules then the two projections V1 ⊕ V2 → Vi for i = 1, 2

induce for each pointed S-sheaf X a morphism

Hom•S(DS(V1 ⊕ V2),X)→ Hom•S(DS(V1),X)×S Hom•S(DS(V2),X) (A.1.3.1)

and a pointed S-sheaf X is said to satisfy condition (E) if for all vector bundles

V1, V2 the morphism (A.1.3.1) is an isomorphism.

A.1.4 Proposition. — With notation as above:

(i) if X satisfies condition (E) over S and S′ → S is a morphism then XS′

satisfies condition (E) over S′,

(ii) X satisfies condition E for S if and only if there is a cover (Si → S)i∈I

such that for each i ∈ I the sheaf XSi satisfies condition (E) over Si,

(iii) if S is a scheme and X is an S-pointed ind-scheme then X satisfies con-

dition (E).

Proof. — (i) and (ii) follow immediately from the definition. For (iii) we may

assume that X is a scheme as filtered colimits preserve fibre products. In which

case the claim follows from the fact that

Hom•S(DS(M ),X) = M ⊗OS
HomOS

(ΩX/S,•,OS).
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A.1.5. If X is a pointed S sheaf satisfying condition (E) over S then, writing

D
(n)
S = DS(On), the inverse of the isomorphism

Hom•S(D
(2)
S ,X)→ Hom•S(D

(1)
S ,X)×S Hom•S(D

(1)
S ,X)

composed with the map

Hom•S(D
(2)
S ,X)→ Hom•S(D

(1)
S ,X)

induced by the sum O2
S → OS defines a map

Hom•S(D
(1)
S ,X)×Hom•S(D

(1)
S ,X)→ Hom•S(D

(1)
S ,X).

This equips

LieX/S := Hom•S(D
(1)
S ,X)

with the structure of an abelian group over S. Moreover, the S-pointed sheaf

D
(1)
S admits an action of the sheaf of monoids OS induced by the action of OS

on itself and this equips LieX/S with the structure of an OS-module. We call

LieX/S the Lie algebra of the pointed S-sheaf X.

A.1.6. Let S be a sheaf and let X be a pointed S-sheaf. We say that X is a

formal variety over S if the following conditions hold:

(i) the inclusion X̂→ X is an isomorphism,

(ii) for each k ≥ 0 the morphism Inf
(k)
S (X)→ S affine,

(iii) X is formally smooth and locally finitely presented over S, and

(iv) LieX/S is a vector bundle.(1)

A.1.7 Proposition. — Let S be a sheaf and X a pointed S-sheaf. Then the

following are equivalent:

(i) X is a formal variety over S,

(ii) there exists a cover (Si → S)i∈I, integers ni ≥ 0 for i ∈ I and pointed

Si-isomorphisms

Âni
Si

= InfSi(A
ni
Si

)
∼−→ XSi .

Proof. — This follows from Proposition 3.1.1 of [27].

A.1.8. The dimension dimS(X) of a formal variety X/S is defined to be the

map S→ NS giving the rank of the locally free OS-module LieX/S.

If S is a scheme and X/S is a smooth scheme over S equipped with a closed

S-point S→ X then X̂ is a formal variety over S. A formal group F over S is

a formal variety F/S which is also a sheaf of groups over S (with identity the

given point). As the functor X 7→ X̂ commutes with products, it follows that

if S is a scheme and G/S is a smooth separated group scheme over S then Ĝ/S

is a formal group over S.

(1)(i) and (ii) combined show that X satisfies condition (E) over S so that this makes sense.
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A.2. Serre’s tensor product

Here we give a (very broad) generalisation of a basic construction due to

Serre (Chapter XIII §2 of [1]). The idea that this construction of Serre could

and should be generalised, at least in the study of CM elliptic curves, is not an

idea wholly original to the author (see §1.7.4 of [12]) however it was arrived

at independently.

A.2.1. Let S be a sheaf and let A be a sheaf of rings over S. We say that an

A -module V satisfies condition (P) if, locally on S, V is a direct factor of a

free A -module of finite rank. The class of A -modules satisfying condition (P)

is clearly closed under the operations of taking A -linear Hom, tensor product,

direct factors and direct sums.

A.2.2 Proposition. — Let V satisfy condition (P). Then the functor

Mod(A )→ Mod(A ) : G 7→ G⊗A V

is exact.

Proof. — We need only show that this functor preserves monomorphisms.

This is local on S and so we may assume that V is a direct factor of a free

A -module in which case it is clear as G ⊗A V ⊂ G ⊗A A n = Gn for some

n ≥ 0 and G 7→ Gn is exact.

A.2.3 Proposition. — We have the following

(i) For each pair of A -modules V ,W satisfying condition (P) and each pair

of A -modules G,F ∈ Mod(A ) the morphism

HomA
S (F,G)⊗A HomA

S (V ,W )→ HomA
S (F⊗A V ,G⊗A W )

is an isomorphism.

(ii) If G is an A -module satisfying condition (E) and V is an A -module

satisfying condition (P) then the natural morphism LieG/S ⊗A V →
LieG⊗A V /S is an isomorphism.

Proof. — (i) The map defined is functorial and so we may, by adjunction,

assume that V = A so that we are reduced to showing that the map

iW : HomA
S (F,G)⊗A W → HomA

S (F,G⊗A W )

is an isomorphism. The claim is clearly local on S so we may assume that

A n = W ⊕ W ′. We then have iA n = iW ⊕ iW ′ so that it is enough to show

the claim for A n which is clear.

(ii) This is proved in much the same way as (i).
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A.2.4. A formal A -module over S is a formal group F/S equipped with an

action of A . If we are given a homomorphism A → OS then we say the action

is strict, or that F is a strict formal A -module, if the two actions of A on the

OS-module LieF/S coming from the action of A on F and the homomorphism

A → OS coincide. In this case, if V is an A -module satisfying condition (P)

then V ⊗A OS is a locally free OS-module and we write rk(V ) : S → NS for

the rank of this OS-module.

A.2.5 Corollary. — If F is a strict formal A -module over S and V is an

A -module over S satisfying condition (P) then F ⊗A V is a strict formal

A -module. Moreover, we have dim(F⊗A V ) = dim(F) · rk(V )

Proof. — As the claim is local on S we may assume that V is the kernel

of some idempotent endomorphism A n → A n for some n. The diagram of

S-pointed sheaves

Fn // Fn

F⊗A V //

OO

S

OO

remains cartesian after applying Inf
(k)
S for each k ≥ 1. This shows that F⊗A V

satisfies conditions (i) and (ii) of (A.1.6) and by (A.2.6) we see that F⊗A V also

satisfies (iii). Therefore F⊗A V satisfies condition (E) over S and by (A.2.3)

it satisfies condition (iv) of (A.1.6) so that F/S is a formal A -module over S.

That the action of A on F⊗A V is strict and dim(F⊗A V ) = dim(F) · rk(V )

follows from (A.2.3).

A.2.6 Proposition. — Let f : G → F be a homomorphism of A -modules

and let V satisfy condition (P). If f satisfies one of the following properties

then so does f ⊗A V : G⊗A V → F⊗A V :

(i) formally unramified, formally smooth or formally étale,

(ii) formally universally closed, formally separated, formally proper(2)

(iii) locally finitely presented, quasi-compact or quasi-separated,

(iv) has connected geometric fibres,

(v) affine, or affine and flat,

(vi) finite locally free.

Proof. — All properties of morphisms of sheaves descend under covers of S so

we may assume that V ⊕ V ′ = A n and hence

(f ⊗A V )⊕ (f ⊗A V ′) = f ⊗A A n = fn.

(2)Here we mean that G/S satisfies the local existence, resp. uniqueness (resp. local existence

and uniqueness) of the valuative criterion.
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Moreover, these properties are all preserved by f 7→ fn and base change. From

the cartesian diagram

Gn
fn

// Fn

(G⊗A V )⊕ ker(f ⊗A V ′)
(f⊗A V )⊕0

//

OO

F⊗A V

OO

we see that

(f ⊗A V )⊕ 0 = (f ⊗A V )×S ker(f ⊗A V ′)

satisfies the given property. But ker(f ⊗A V ′)→ S is an epimorphism hence,

f ⊗A V satisfies the given property.

A.3. Strict finite O-modules

A.3.1. Here we give a short overview of faltings’ generalisation of Cartier

duality to strict finite O-modules [20]. We will then use it to prove (1.2.12)

and (1.2.13) as claimed (see (A.3.7)).

Let O be a complete local Dedekind domain with maximal ideal p, residue

field F of cardinality Np and fix an affine scheme S→ Spf(O). In [20] faltings’

defines the notion of a strict finite O-module G over S and the notion of

a strict homomorphism between strict finite O-modules. We will not recall

the definition but only say the following. A strict finite O-module is a finite

locally free group scheme G over S, equipped with an action of O satisfying a

certain strictness condition. The strictness condition on the O-action means

that for each a ∈ O, the endomorphism a : G → G, can be lifted along

a certain nilpotent thickening G → G[ in such a way that this lift acts by

multiplication by a on the fibre of the cotangent complex of G/S at the origin.

A homomorphism f : G → G′ of strict finite O-modules is strict if it can be

lifted to a map G[ → G′[ compatible with the lift of the O-action. We refer

the reader to §2 of [20] for the precise definitions.

In any case, one obtains the category of strict finite O-modules and it is

a sub-category of the category of finite locally free groups schemes over S

equipped with an action of O. Moreover, if S′ → S is a morphism and G/S is

a strict finite O-module so is G×S S′.

A.3.2 Example. — Every finite locally free étale group scheme over S equipped

with an action of O is strict and every O-linear homomorphism either to or

from an étale strict finite O-module is strict. This is explained by the fact

that the cotangent complex of such a scheme is trivial.

For each p-adic affine scheme S and each Lubin–Tate module F→ Spf(O),

writing FS = F×Spf(O) S, the finite locally free group schemes FS[pn] equipped

with their O-action are naturally strict finite O-modules over S.
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A.3.3. We now explain faltings’ version of Cartier duality for strict finite

O-modules. Let F = Fπ be the Lubin–Tate module over Spf(O) associated to

the uniformiser π ∈ O, so that

π : F→ F

lifts the Np-power Frobenius map over Spec(F) → Spf(O). Given a strict

finite O-module G/S we define the sheaf of O-modules over S

Dπ(G) = colim
r

HomO,str
S (G,FS[pr]).

Faltings then proves the following (see Theorem 8 of [20]):

A.3.4 Theorem. — The functor

G 7→ Dπ(G) := colim
r

HomO,str
S (G,Fπ/S[pr])

defines a duality on the category strict finite O-modules over S and is compati-

ble with base change in S. Moreover, the degree of Dπ(G) is equal to the degree

of G and if f : G → G′ is a strict homomorphism of strict finite O-modules

over S then Dπ(f) is a closed immersion (resp. faithfully flat) if and only if

f is faithfully flat (resp. a closed immersion).

A.3.5. Given a strict finite O-module G we call Dπ(G) the dual of G.

If S has characteristic p then for each strict finite O-module G the Np-power

relative Frobenius map

FrNp
G/S : G→ FrNp∗(G)

is strict so that taking the dual of the Np-power relative Frobenius map of the

dual of G one obtains a map

VG/S : FrNp∗(G)→ G

and Faltings shows that the composition

G
FrNp

G/S−→ FrNp∗(G)
VG/S−→ G

is equal to the endomorphism π : G→ G (see the paragraph of §7 [20]).

It is a formality to extend the duality G 7→ Dπ(G) to a pair of functors

defining inverse anti-equivalences between the categories of ind-strict finite

O-modules and pro-strict finite O-modules.

The final observation we need to make is that if F/S is a Lubin–Tate O-

module then the inclusions

F[pn]→ F[pn+1]

are strict so that we may view F = colimn F[pn] as an ind-strict O-module

over S. Moreover, with this definition every homomorphism of Lubin–Tate

O-modules over S is a morphism of ind-strict finite O-modules (this is a con-

sequence of the formal smoothness of F).
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A.3.6 Corollary. — The functor from ind-strict finite O-modules to pro-

strict finite O-modules

F/S 7→ lim
n

Dπ(F[pn])

defines an anti-equivalence of categories between Lubin–Tate O-modules over

S and rank one O-local systems over S with quasi-inverse

L 7→ Fπ/S ⊗O L ∨.

Proof. — It is enough to show that given an ind-strict finite O-module G,

the pro-strict finite O-module Dπ(G) is a rank one O-local system if and

only if G is a Lubin–Tate O-module. If Dπ(G) is a rank one O-local system,

as the functor Dπ is compatible with base change and being a Lubin–Tate

O-module is local on S we may assume that Dπ(F)
∼−→ ÔS. We then get

G
∼−→ Dπ(Dπ(G))

∼−→ Dπ(ÔS) = Fπ/S so that G is a Lubin–Tate O-module.

Conversely, let G be a Lubin–Tate O-module. We claim that Dπ(G[pn]) is

étale for all n ≥ 0. As Dπ(G[pn]) is finite locally free and S is p-adic, to show

this we may assume that S has characteristic p. In this case, the composition

G
FrNp

G/S→ FrNp∗(G) = G⊗O p−1 1⊗π−→ G

is equal to π from which it follows that VG/S is an isomorphism. This im-

plies that VG[pn]/S is an isomorphism for all n ≥ 0, so that D(VG[pn]/S) =

FrNp
Dπ(G[pn])/S is an isomorphism. Therefore Dπ(G[pn]) is étale and it follows

that Dπ(G) = limn Dπ(G[pn]) is a pro-finite étale strict O-module scheme.

The exact sequences

0→ G[pn]→ G[pn+1]
π→ G[pn+1]

now give exact sequences

Dπ(G[pn+1])
π−→ Dπ(G[pn+1])→ Dπ(G[pn])→ 0. (A.3.6.1)

Localising, we may assume that Dπ(G[pn]) is a strict finite constant O-module

for all n ≥ 0. Then the short exact sequences (A.3.6.1) combined with the fact

that deg(Dπ(G[pn])) = Npn for all n ≥ 0, show inductively that there exists

an isomorphism Dπ(F[pn])
∼−→ O/pn

S
such that the maps

Dπ(G[pn+1])→ Dπ(G[pn])

correspond to the reduction maps

O/pn+1
S
→ O/pn

S
.

Therefore,

Dπ(G) = lim
n

Dπ(G[pn])
∼−→ lim

n
O/pn = ÔS

is a rank one O-local system on S and this shows that Dπ defines a contravari-

ant equivalence between the category of Lubin-Tate O-modules and rank one

O-local systems over S.
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For the statement regarding the quasi-inverse, we have

Dπ(L ) = colim
n

HomO,str
S (L ,FS[pn])

= colim
n

HomO
S (L ,FS[pn])

= colim
n

HomS(ÔS,FS[pn]⊗O L ∨)

= colim
n

FS[pn]⊗O L ∨

= FS ⊗O L ∨.

A.3.7 Corollary. — Let S be a p-adic sheaf.

(i) If F/S is a Lubin–Tate O-module the natural homomorphism

ÔS → EndO
S (F)

is an isomorphism.

(ii) If F,F′/S are a pair of Lubin–Tate O-modules over S then HomO
S (F,F′)

is an O-local system over S and the evaluation homomorphism

F⊗O HomO
S (F,F′)→ F′

is an isomorphism.

(iii) The functor

MLT × C L O →MLT ×MLT : (F,L ) 7→ (F,F⊗O L )

is an equivalence of stacks.

Proof. — (i) For any rank one O-local system we have ÔS
∼−→ EndO

S (L ) so

that the composition

ÔS → EndO
S (F)

∼−→ EndO
S (Dπ(F))

is an isomorphism and therefore ÔS → EndO
S (F) is an isomorphism.

(ii) We may assume that F′ = F ⊗O L . Then (i) combined with (1.2.8)

gives

L
∼−→ HomS(F,F⊗O L ).

Moreover, using this identification the evaluation homomorphism

F⊗O L = F⊗O HomO
S (F,F⊗O L )→ F′ = F⊗O L

becomes the identity.

(iii) The functor in question is the product of the equivalences idMLT
and

L 7→ Dπ(L ∨) and is therefore an equivalence.
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A.4. A principal ideal theorem

In this section we would like to prove a strengthening of an old principal

ideal theorem (see Tannaka [35]). We first state a special case for imaginary

quadratic fields (A.4.1) as it is possible to do so without having to make any

new definitions and it is the only case we need in main the text. We shall then

prove the general result (A.4.8) for arbitrary number fields K and explain how

it strengthens the result in [35].

The author would like to point out that while the result is new, our proof

is really just a refinement of Tannaka’s, essentially a combination of his proof,

some very old results in class field theory, and a result of one of his contempo-

raries (see Terada [36]). It is also interesting to point out that Tannaka was

motivated to prove his result by Deuring who had conjectured it, presumably

inspired during his work on CM elliptic curves.

A.4.1 Proposition. — Let K be an imaginary quadratic field, let K(f)/K be

the ray class field of conductor f, let g be an ideal divisible by f and let

l : Prin
(g)
1 mod f → K× : a 7→ l(a)

be a homomorphism such that l(a) ·OK = a ⊂ K and such that l(a) = 1 mod f.

Then l can be extended to a map

l : Id
(g)
OK
→ K(f)× : a 7→ l(a)

such that l(a) ·OK(f) = a ·OK(f) and such that for all a, b ∈ Id
(g)
OK

we have

l(ab) = l(a)σa(l(b)).

A.4.2. Let K be a number field with ring of integers OK. Recall by a modulus

of K is meant a finite formal sum

f =
∑
v

fvv

over the places v of K such that fv ∈ N for all v and such that fv ∈ {0, 1} for

v infinite and real and fv = 0 for v infinite and complex. If f and f′ are moduli

of K then their product ff′ is defined by (ff′)v = fv + fv′ for all finite places v

and (ff′)v = max(fv, f
′
v) for all infinite primes v. We say f divides f′ if fv ≤ f′v

for all places v. If fv = 0 for all infinite v then we identify f with an ideal of

OK in the usual way.

If a ∈ K× we write a = 1 mod f to mean that v(a − 1) ≥ fv for all finite

places v and such that a > 0 for all infinite real places v of K with fv 6= 0.

For a pair of fractional ideals a, b of K we write a = b mod f to mean that

ab−1 = (a) with a = 1 mod f.

For each modulus f there is a certain extension K(f)/K called the ray class

field of conductor f which is unramified at all finite places v of K with fv = 0.

This extension is characterised by the property that if g is any ideal of K
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divisible by (the finite part of) f and Id
(g)
K denotes the group of fractional

ideals prime to g then the map

Id
(g)
K → G(K(f)/K) : a 7→ σa (A.4.2.1)

is surjective and its kernel is equal to Prin
(g)
1 mod f ⊂ Id

(g)
K , the sub-group gen-

erated by ideals a prime to (the finite part of) g with a = OK mod f.

We now recall certain moduli defined for a finite abelian extension of number

fields L/K (see §1 of [36] for precise details). We write fL/K, DL/K and GL/K

for conductor, different and genus ideal (‘Geschlechtermodul’) of the extension

L/K which are moduli for K, L and K respectively and we have

fL/K = DL/KGL/K.

The moduli fL/K, DL/K are not necessarily ideals however GL/K is always

an ideal of OL. Finally, if L/K′/K is an intermediate extension we define

fL/K′/K = DL/K′GL/K which is an integral ideal of K′. We note that fL/K,

GL/K, and fL/K′/K are all invariant under G(L/K).

Finally, for what follows we will use exponential notation for the action of

Galois groups on elements or fractional ideals of the respective fields.

A.4.3 Theorem (Hasse’s Norm Theorem). — Let L/K be a finite cyclic

extension. Then NL/K(IL) ∩K× = NL/K(L×).

A.4.4 Theorem (Principal Genus Theorem). — Let L/K be a finite cyclic

extension with generator σ ∈ G(L/K) and let a be a fractional ideal of L. Then

NL/K(a) = OK if and only if a = b1−σ for some fractional ideal b of L.

Proof. — As G(L/K) is cyclic and generated by σ we have

{a ∈ IdL : aaσ · · · aσn−1
= OL}

Id1−σ
L

∼−→ H1(G(L/K), IdL) : a 7→ (σi 7→ aaσ · · · aσi−1
)

and by Proposition 6, §13, Chapter V of [25] the group H1(G(L/K), IdL)

vanishes which is precisely the claim.

A.4.5 Theorem (Terada’s Norm Theorem). — Let L/K be a finite cyclic

extension with generator σ ∈ G(L/K), let a ∈ K and let m be an ideal of OL.

Then the following are equivalent:

(i) NL/K(a) = 1 mod fL/Km.

(ii) a = b1−σ mod GL/Km for some b ∈ L.

Proof. — This is Theorem 2 of [36].
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A.4.6. Now let L/K be the ray class field of conductor fL/K and let p1, . . . , pr
be prime ideals of K, unramified in L/K and such that

G(L/K) =

r⊕
i=1

〈σi〉

where σi is the Frobenius element corresponding to pi (we can do this by

(A.4.2.1)). Also, for 1 ≤ i ≤ n let ni be the order of σi and let Ki ⊂ L be the

sub-extension fixed by the sub-group of G(L/K) generated by {σj}j 6=i. We

note that G(Ki/K)
∼−→ 〈σi〉.

A.4.7 Theorem (Tannaka). — For 1 ≤ i ≤ r let ai be a fractional ideal of

Ki such that pi = a1−σi
i mod fL/Ki/K. Then a1 · · · ar = OL mod GL/K.

Proof. — This is Theorem 3 of [35].

A.4.8 Theorem. — Let K be a number field, let L/K be the ray class field of

conductor fL/K, let g be an ideal divisible by (the finite part of) fL/K and let

l : Prin
(g)
1 mod fL/K

→ K× : a 7→ l(a)

be a homomorphism such that l(a) · OK = a ⊂ K and such that l(a) = 1 mod

fL/K. Then l can be extended to a map

l : Id
(g)
OK
→ L× : a 7→ l(a)

such that:

(i) l(a) ·OL = a ·OL,

(ii) l(a) = 1 mod GL/K, and

(iii) for all a, b ∈ Id
(g)
OK

we have

l(ab) = l(a)σa(l(b)).

Proof. — For each 1 ≤ i ≤ r let us make the following constructions. As pnii ∈
Prin

(g)
1 mod fL/K

we have l(pnii ) = 1 mod fL/K and a fortiori l(pnii ) = 1 mod fKi/K

so that l(pnii ) ∈ NKi/K(IKi). By Hasse’s Norm Theorem, there is some πi ∈ Ki

with NKi/K(πi) = l(pnii ). By construction we have

NKi/K(pi(πi)
−1) = pnii p−nii = OK

so that, by the Principal Genus Theorem, we can find an ideal bi of Ki with

pi(πi)
−1 = b1−σi

i .

We note that

fL/Ki/K = GKi/K(fL/Kf
−1
Ki/K

)

so that

NKi/K(πi) = l(pfii ) = 1 mod fL/K = 1 mod fKi/K(fL/Kf
−1
Ki/K

).
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We now apply Terada’s Norm Theorem (with m = fL/Kf
−1
Ki/K

) to find αi ∈ Ki

with αi = 1 mod fL/Ki/K and πi = αiβ
1−σi
i and

NKi/K(πi) = NKi/K(αiβ
1−σi
i ) = NKi/K(αi) = l(pnii ). (A.4.8.1)

Finally, we set ai = (βi)bi to get

pi = (αi)a
1−σi
i and so pi = a1−σi

i mod fL/Ki/K.

The ideals ai for 1 ≤ i ≤ r satisfy the conditions of Tannaka’s Theorem and

so we find an A ∈ L with A = 1 mod GL/K with∏
1≤i≤m

ai = (A).

Finally, we set

Θi = αiA
1−σi

and note that Θi ·OL = pi.

We now go about extending the map l, following rather closely the method

of §1 of [35]. Each a ∈ Id
(g)
OK

can be written uniquely as a product of ideals

a = γ(a) ·
r∏
i=1

pxii (A.4.8.2)

with γ(a) ∈ Prin
(g)
1 mod fL/K

and 0 ≤ xi < ni. Before we continue let us note the

following multiplicative relations for the ideals γ(a):

(i) If b ∈ Prin
(g)
1 mod fL/K

then

γ(ab) = γ(a)γ(b). (A.4.8.3)

(ii) If b = pj and xj 6= nj − 1 then

γ(pj) = OK and γ(apj) = γ(a). (A.4.8.4)

(iii) If b = pj and xj = nj − 1 then

γ(apj) = γ(a)γ(p
nj
j ). (A.4.8.5)

Still following §1 of [35] we now define l(a) by

l(a) = l(γ(a))

n∏
i=1

Θ
wi(xi)
i = l(γ(a))Aσa−1

r∏
i=1

α
1+σi+···+σ

xi−1
i

i

where

wi(xi) =

 xi∑
j=1

σjpi

 · i−1∏
k=1

σxkpk .

It is clear that l(a) ·OL = a ·OK(a) and that this map does indeed extend the

given map l. Moreover, by construction we have the relations

A = 1 mod GL/K l(a) = 1 mod fL/K αi = 1 mod fL/Ki/K,
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so that as GL/K divides both fL/K and fL/Ki/K, and as GL/K, fL/K and fL/Ki/K
are invariant under the action of G(L/K), we get the relation

l(a) = 1 mod GL/K.

All that remains to be shown is that l(ab) = l(a)σa(l(b)) for a, b ∈ Id
(g)
OK

.

So let b ∈ Id
(g)
OK

be another fractional ideal, and also write

b = γ(b) ·
r∏
i=1

pyii and ab = γ(ab) ·
r∏
i=1

pzii

where γ(b), γ(ab) ∈ Prin
(g)
1 mod fL/K

and 0 ≤ yi, zi < ni. Define δi ∈ {0, 1} for

1 ≤ i ≤ r by the equality

zi = xi + yi − δini.

Then one finds (see equation (9) of [35])

l(a)σa(l(b))

l(ab)
=
l(γ(a))l(γ(b))

l(γ(ab))
·
r∏
i=1

NKi/K(αi)
δi . (A.4.8.6)

It remains to check that the right hand side of (A.4.8.6) is equal to one for

all ideals b. The group Id
(g)
OK

is generated (as a monoid!) by Prin
(g)
1 mod fL/K

and

p1, . . . , pn so that by induction, it is enough to check that l(ab) = l(a)σa(l(b))

when b ∈ Prin
(g)
1 mod fL/K

or when b = pj for 1 ≤ j ≤ r. If b ∈ Prin
(g)
1 mod fL/K

then δi = 0 for 1 ≤ i ≤ r and by (A.4.8.3) we have γ(a)γ(b) = γ(ab) so that

l(γ(a))l(γ(b))

l(γ(ab))

r∏
i=1

NKi/K(αi)
δi = 1.

If b = pj and xj 6= nj − 1 then δi = 0 for 1 ≤ i ≤ r and by (A.4.8.4) we

have γ(pj) = OK and γ(apj) = γ(a) so that

l(γ(a))l(γ(b))

l(γ(ab))

r∏
i=1

NKi/K(αi)
δi = 1.

Finally, if b = pj and xj = nj − 1 then δi = 0, unless i = j in which case

δj = 1, so that

r∏
i=1

NKi/K(αi)
δi = NKj/K(αj) = l(γ(p

nj
j ))

by (A.4.8.1). By (A.4.8.5) we have γ(apj) = γ(a)γ(p
nj
j ) so that

l(γ(a))l(γ(b))

l(γ(ab))

r∏
i=1

NKi/K(αi)
δi = l(γ(p

nj
j ))−1l(γ(p

nj
j )) = 1.

Therefore, for all a, b ∈ Id
(g)
OK

we have l(ab) = l(a)σa(l(b)).
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A.4.9 Remark. — Let us now explain how (A.4.8) strengthens the main

result of [35]. The result in question is Theorem 1 of [35] and it states (we

continue to use the notation of (A.4.8))

Theorem (Tannaka’s Principal Ideal Theorem). — There exist numbers

Θ(a) ∈ L, indexed by ideals a ∈ IdOK
, such that the following hold:

(i) Θ(a) ·OL = a ·OL,

(ii) Θ(a) = 1 mod GL/K, and

(iii)
Θ(a)σa(Θ(b))

Θ(ab)
∈ O×K.

It is now an easy to replace (iii) of Tannaka’s Principal Ideal Theorem with

Θ(a)σa(Θ(b))

Θ(ab)
= 1.

Consider the sub-group

Prin
(fL/K)

1 mod fL/K
⊂ Id

(fL/K)

K .

As Id
(fL/K)

K is free abelian (generated by the prime ideals prime to fL/K) and

every sub-group of a free abelian group is itself free abelian, one can define a

multiplicative map

Prin
(fL/K)

1 mod fL/K
→ K× : a 7→ l(a)

such that l(a) ·OK = a and such that l(a) = 1 mod fL/K. Applying (A.4.8) to

the map l we find a map

l : Id
(fL/K)

OK
→ L× : a 7→ l(a)

such that l(a) ·OL = a ·OL, l(a) = 1 mod GL/K and such that

l(a)σa(l(b))

l(ab)
= 1.

Therefore, putting l(a) = Θ(a) we can replace (iii) of Tannaka’s Principal

Ideal Theorem with
Θ(a)σa(Θ(b))

Θ(ab)
= 1.
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[2] Schémas en groupes. I: Propriétés générales des schémas en groupes –
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